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FOREWORD

This evaluation was conducted by the Westinghouse
tory under NASA contract NAS 3-2540. Mr, . Moorhead, of the Lewis
Research Center Space Power Systems Division, was the NASA Project
Manager for the program. Mr. G. G. Lessmann was responsible for per-
formance of the program at the Westinghousé Astronuclear Laboratory.

The objectives delineated and results reported herein represent the
requirements of Tasks I and II of contract NAS 3-2540. Additional compre-
hensive investigations which were conducted as a part of this program are the
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following:
I - Weldability of Refractory Metal Alloys (CR-1607)
II - Long-Time Elevated Temperature Stability of Refractory Metal
Alloys (CR-1608)
II - Effect of Contamination Level on Weldability of Refractory Metal
Alloys (CR-1609)
IV - Post Weld Annealing Studies of T-111 (CR-1610)
V - Weldability of Tungsten Base Alloys (CR-1611)

Additional salient features of this program have been summarized in the
following reports:

G. G. Lessmann, *'The Comparative Weldability of Refractory Metal
Alloys, '* The Welding Journal Research Supplement, Vol. 45 (12),
December, 1966.

G. G. Lessmann and R. E. Gold, ""The Weldability of Tungsten Base
Alloys, '* The Welding Journal Research Supplement.

D. R. Stoner and G. G. Lessmann, '"Measurement and Control of Weld
Chamber Atmospheres, '* The Welding Journal Research Supplement,
Vol. 30 (8), August, 1965.

G. G. Lessmann and D. R. Stoner, *"Welding Refractory Metal Alloys
for Space Power System Applications, '* Presented at the 9th National
SAMPE Symposium on Joining of Materials for Aerospace Systems,
November, 1965,

iii



D. R. Stoner and G. G. Lessmann, ''Operation of 10'10 Torr Vacuum
Heat Treating Furnaces in Routine Processing, ** Transactions of the
1965 Vacuum Metallurgy Conference of the American Vacuum Society,
L. M. Bianchi, Editor.

G. G. Lessmann and R. E. Gold, ""Thermal Stability of Refractory Metal
Alloys'', NASA Symposium on Recent Advances in Refractory Metals for
Space Power Systems, June, 1969.

D. R. Stoner, '"Welding Behavior of Oxygen Contaminated Refractory
Metal Alloys, '* Presented at Annual AWS Meeting, April, 1967.
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I. INTRODUCTION

This weldability study is one of a number of broad based programs sponsored by the Space
Power System Division which were designed to upgrade refractory metal alloy technology in
terms of space power system requirements. Contemplated systems will convert thermal energy
to electric power using Brayton or Rankine thermodynamic cycles or direct conversion. The
major design objective of high thermal efficiency at minimum system weight can be realized
by operating at the highest possible temperature and at moderate working fluid pressures.

In this respect, liquid alkali metals are excellent working fluids, while refractory metal
alloys, combining superior high temperafure sirength and excelient corrosion resistance in
alkali metals, are uniquely suited for system structures. The most severe shortcomings of

refractory metals, poor oxidation resistance and adverse ductility response to atmospheric

contamination, are avoided in the high vacuum space environment.

This weldability study was application oriented. Hence, requirements of long life structures
deployed in high vacuum environments were emphasized. This emphasis represents a consider-
able departure from the short-life aerospace applications for which the alloys were originally
designed, and, in part, justified the need for this program. A more pressing necessity, how-
ever, arose because these alloys had accrued negligible service time in actual hardware.
Hence, this program was conceived as a major comparative review of a new group of promis-
ing materials, and as the first evaluation emphasizing an application for which these materials

are ideally suited.

The primary objective of this study was to provide the essential information required for
rating all the refractory metal alloys on the basis of weldability. For this purpose the

program was designed to provide a comparison of alloys based on the following information:

1. A measure of weld hot tear sensitivity.
2. The degree of impairment of alloy ductility resulting from welding.

3. The sensitivity of weld properties to weld process and parameter variations.



4. The effect of section size on weldability.
5. The degree of recovery obtainable by post weld annealing.

6. Tensile joint efficiencies throughout the anticipated application temperature
range.

The secondary objective of this program was to provide guidelines for the welding of these
materials. Particular emphasis was placed on developing joint preparation techniques and
methods for controlling welding environments to minimize contamination. The joint prepara-
tion studies are described in this teport. The results of the weld atmosphere control studies

®)

are summarized in this report but the detailed test data were previously reported*™’.



1l. SUMMARY AND CONCLUSIONS

WELDABILITY

(1)

)

@)

(4)

Good weldability was exhibited by the second generation columbium and tantalum
alloys as demonstrated by restrained weld tests and general accommodation in weld-
ing both sheet and plate. Few unusual complications arose within a nominal range
of welding conditions even though weldability limitations were exceeded for several
alloys. Room temperature and elevated temperature weld strength approached base
metal strength for these alloys demonstrating joint efficiencies at all temperatures
of nearly 100%. Within the respective alloy groups, FS-85 and T-111 demonstrated

superior combinations of strength and fabricability.

Welding resulted in a loss of ductility in all alloys as measured by the bend ductile-
to-brittle transition temperature. The comparative degradation of ductility occurring
with welding provides a convenient measure of weldability in these systems. Plate
weldability was comparable to sheet weldability for the more fabricable alloys.
However, with the less weldable alloys, adverse welding characteristics were

exaggerated in plate welding.

Tantalum alloys were considerably less sensitive to welding than columbium alloys,

and as a result have superior fabricability.

The tungsten alloys had poor weldability and were difficult to handle because of
their low ductility at ambient temperatures. Weld cleavage failures occurred
frequently during weld cooling through the ductile-brittle transition range to room
temperature. In this respect, variability in weld ductility for different welding
conditions seemed to result from differences in the magnitude and distribution of
residual weld stress levels. W-25Re displayed an apparent tendency toward hot

tearing as well as cleavage during welding.

e mme e 8
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(6)

The importance of attaining balance between matrix and grain boundary strengths

for high temperature application was demonstrated. Alloys with large weld grains
(solid solution alloys), low recrystallization temperatures, and relatively weak grain
boundaries (yttrium modified alloys) had the least desirable tensile fracture character-

istics.

Considerable alloy~to-alloy variability in porosity sensitivity was demonstrated. In

the most sensitive alloys porosity is eliminated by preparing edges by machining prior
to pickling and vacuum degassing after pickling whereas in the feast sensitive alloys
sheared and pickled edges are satisfactory. Hydrogen adsorption during pickling,

and release during welding, is the most probable cause of porosity. Procedures reducing

the "pre-weld" joint surface area reduce porosity.

THERMAL RESPONSE TO WELDING

(1)

(2)

Columbium alloy weld behavior was rationalized with a thermal response analysis.
Welding conditions which tend to stimulate development of the heat affected zone
and grain size in this zone increase the weld ductile-to-brittle transition tempera~
ture. Consequently, differences in alloy responses can be related to the metallurgi-
cal characteristics affecting grain stability and growth phenomena. Weld process
and metallurgical factors combine such that a heat input threshold for ductility
impairment is observed for alloys which are dispersion strengthened. With increased
grain stability, as realized with the yttrium modified alloys, this threshold occurs at
a higher heat input. The solid solution alloy did not display this threshold but rather
a continuous ductility loss with increasing size of the heat affected zone. This
implies that the observed differences between solid solution and dispersion strengthened

alloys is continuous vs. discontinuous grain growth in the heat affected zone.

The thermal analysis interpreted in terms of a heat input threshold, provided a
sensible rationale' to which the general improved ductility of electron beam welds

can be ascribed.




WELD ATMOSPHERE CONTROL

(1)

(2)

3

(4)

©)

Using optimum evacuation and backfilling techniques, a high quality inert welding
atmosphere having less than 1.25 ppm total active impurities can be obtained in
vacuum purged chambers. Following backfilling, the welding atmosphere gradually
deteriorates permitting 6 or more hour use depending on the contamination limit

established for the particular run.

The sources of moisture and oxygen contamination in weld chamber atmospheres
differ considerably. Consequently, these contaminants are not related and must be

considered independently.

The oxygen level in the backfilled weld chamber atmosphere depends on the gas

S torr, and the

quality, weld box tightness, a moderate evacuation of 10_4 -10"
backfill techniques employed. The oxygen level increases following backfilling

mainly by diffusion through the weld box gloves.

Low moisture levels in the backfilled weld chamber atmosphere are obtained by
using extended pumpdown cycles, conveniently overnight for 16 to 18 hours to the
low 10-‘S torr range. Atmosphere stability with respect to this impurity is enhanced
by longer and lower pressure pumpdowns since outgassing of the chamber interior

and tooling surfaces is the primary source of moisture.

The leak rate (pressure rise rate of a sealed chamber) is an excellent measure of

the adequacy of a pumpdown cycle since it represents the sum of leakage and out-
gassing rates. Hence, a low leak rate assures low moisture and oxygen rise rates in
the backfilled chamber. A 1 minute pressure rise in the evacuated chamber of 3

x 10_5 torr is required for reasonably good stability of the backfilled chamber
atmosphere. In this respect double purge cycles are not beneficial. Contrary to
widely held opinion, welding can be accomplished under a slightly negative pressure
(below 1 atm) without increasing the contamination rate if a good leak rate is

obtained and sound gloves are used.



(6)

7)

(8)

Nitrogen as a contaminant appears to be present in the weld atmosphere in roughly
the same ratio with respect to oxygen as in air. Hence, oxygen can be monitored
and nitrogen contamination assumed by implication to be x4 the oxygen level. The

source of nitrogen, like oxygen, must be air leaks and diffusion through gloves.

Other active atmospheric contaminants which are not generally airborne, such as
hydrocarbons, are avoided by judicious selection of materials, lubricants, and

cleaning techniques for internal chamber components.

Neoprene gloves provided the best over-all performance of those tested. These were
however prone to degassing of sulfur during chamber evacuation. Degassing subsides
with use. Further, it never caused any problem after chamber backfilling. Clean
copper tooling reacts with the sulfur vapors during chamber evacuation and can be
protected with line-of -sight shielding such as loosly wrapped aluminum foil. All

the gloves tested were permeable to air. Hence, for the same size and thickness
glove, the greater the number of gloves used and the smaller the weld chamber the

more rapid will be the deterioration of a weld box atmosphere.

POST WELD ANNEALING

(1)

(2)

)

Columbium base alloys generally require post weld annealing to improve weld

ductility and enhance thermal stability.

Tantalum alloys do not require post weld annealing based on the ductility data
generated in this welding study. However, liquid metal corrosion resistance is
enhanced by post weld annealing and thermal stability considerations established
in the more advanced studies in this program demonstrate the need for post weld

annealing.

The ductility of tungsten and W-25Re alloy weldments is modestly improved by post

weld stress relief.



Il. TECHNICAL APPROACH AND PROCEDURES
ALLOYS

Commercially available high strength alloys and several experimental alloys were included
in this program. These are listed in Table 1. Except for the tungsten alloys these were
purchased in the recrystallized condition and in uniform sheet and plate thicknesses of
0.035 and 0.375 inch respectively. The recrystallized condition is generally favored for

strength and stability in long time application.

Eight columbium base alloys comprise the major portion of this group reflecting the emphasis
of government and industry sponsored alloy development. This emphasis stemmed from the
importance of the density advantage of columbium over tantalum (0.31 Ib/cu.in. vs. 0.60
Ib/cu.in.) and also availability. Inclusion of the two high strength tantalum alloys, T-111
and T-222, reflects a growing interest in these because of greater fabricability combined
with promise of an eventual tantalum system with a superior high temperature strength-density
ratio. The weaker solid solution strengthened Ta-10W and SCb-291 alloys were included

as reference alloys. The three tungsten alloys were included primarily to ascertain the state
of the welding art in joining extremely brittle materials, and to determine if recent improve-
ments in tungsten technology would translate into improved weldability. Therefore, both
unalloyed tungsten and tungsten-25 rhenium were produced using recently developed
techniques for conversion from arc cast ingots. The arc cast material was selected because

it provided porosity free welds in a preliminary comparison with several grades of powder
metallurgy tungsten. Sylvania "A" is the only powder metallurgy product evaluated in this
program. |t is designed for high strength but proved to be essentially unweldable and is
therefore not a fabricable material. For this reason weld data on this alloy is given in the

appendix only.



TABLE 1. Alloys Included in the Weldability Study

Nominal Composition

Alloy Weight Percent
AS-55 Cb-5W-1Zr-0.06C+Y
B-66 Cb-5Mo-5V-1Zr
C-129Y Cb-10W-10Hf+Y
Cb-752 Cb-10W-2.5Zr
D-43 Cb-10W-1Zr-0.1C
FS-85 Cb-27Ta-10W-1Zr
SCb-291 Cb-10W-10Ta
D-43+Y Cb-10W-1Zr-0.1C+Y
T-111 Ta-8W-2Hf
T-222 Ta-9.6W-2.4Hf-0.01C
Ta-10W Ta-10W
W-25Re W-25Re
w Unalloyed
Sylvania "A" W-0.5Hf-0.025C

NOTE: All alloys from arc-cast and/or electron beam

melted material.

This list of alloys investigated appears formidable. However, a few comments on the phase

relationships involved, which are basically uncomplicated, prove helpful in this respect.
Complete solid solubility is demonstrated by all combinations of Cb, Mo, Ta, W and V, as

employed in these systems. Hence, these are mutual single phase solid solution strengtheners.
The predominant element of this group in both the columbium and tantalum alloys is tungsten.

Two columbium alloys also contain tantalum, and one contains molybdenum and vanadium

instead of tungsten.




One or the other of the reactive elements, zirconium or hafnium, is a necessary component in
all the high strength columbium and tantalum alloys. These form complex systems with the
other elements but are alloyed at levels below their equilibrium solid solubility limit. Hence,
wrought structures are single phase while cored weld structures may be multiphased. Strength-
ening is realized through both solid solution and dispersion strengthening since hafnium and
zirconium tend to form very stable precipitates with the residual interstitials. A detailed
understanding of the dispersion strengthening mechanism involved is lacking.

Several alloys also contain intentional carbon additions. These allo
during processing and realize their strength in part from carbide dispersions. In this respect

a knowledge of the probable phase relations is important and have been investigated for T-222
by R. L. Ammon, efal,(])cnd for D~43 by Ostermann and Bo||enrafh.(2)

Additions of minor amounts of yttrium in several columbium alloys provide an interesting
modification of mechanical properties resulting primarily in improved ductility. Yttrium is
essentially insoluble in columbium and is very reactive with oxygen. Hence, the most probable
mechanisms for improved ductility are an effective reduction in matrix oxygen level by pre-
ferential combination with yttrium, purification during melting and welding by slagging of

the oxide, and grain refinement resulting from the presence of the highly stable oxideS3’4)
Among the yttrium containing alloys only C~129Y is commercial. AS=-55 was procured on

a "best effort" basis and D-43Y was specially produced only for this program. The grain
refining influence of yttrium was evident in as-received material. AS-55 and C-129Y were
recrystallized at the highest temperatures among the columbium alloys yet had the smallest

grain size.

The pertinent data on composition and metallurgical condition of material procured for this
program are listed in Tables 2 and 3. Check analyses were run on interstitials because of
their important influence on ductility, and, hence, as a quality assurance measure. Hardness
and grain size data along with final anneals are also listed, providing a relative comparison

of grain size stability.
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TABLE 3. Metallurgical Data On As-Received Material

ﬂerahurgical — Hardness ASTM
Alloy Form Condition(1) DPH Grain Size
AS-55 Sheet 60% Cr, Rx 1 ht/2730°F~ 148 9
B-66 Plate Rx 1 hr/23002F 225 6
Sheet Rx 1 hr/2100°F 219 10
C129Y Plate 25% Wr, Sr 1 hr/lsoo‘;F 218
75% Wr, Rx 1 hr/2400°F
Sheet 89% Cr, Rx 1 hr/2400°F 185 10
Cb-752 | Plate Rx 1 hr/2500°F 204 8
Sheet Rx 1 hr/2200°F (2) 205 8-9
D-43 Plate Sr 1 hr/2200°F 202
Sheet Rx 1 hr/2600°F(3) 220 5
D-43Y | Sheet 82.5% Fr, Rx 2 hrs/2400°F 150 8
FS-85 Plate Rx 205 7
Sheet Rx 1 hr/2375°F 190 8
SCb-291 | Plate Rx 160 6
Sheet 85% Cr, Rx 1 hr/2100°F 175 6
Ta-10W Plate Rx 197 8
Sheet Rx 221 6-7
T-111 Plate Rx 223 6-7
Sheet 96% Fr, Rx 4 hrs/2400°F 221 9
T-222 Plate | > 75% Fr, Rx 1 hr/3000°F 276 7-8
Sheet | > 50% Cr, Rx 1 hr/3000°F 273 7-8
W-25Re Sheet 63.8%, then cross rolled 73.1% 526 *
Sr 1 hr/2550°F 492
w Sheet 82.5% Fr, Sr 1 hr/1700°F 517 *

*Stress Relieved, Not Recrystallized

(1) Cr - cold reduction, Wr-warm reduction, Fr-final reduction, Rx-recrystallized, Sr-stress
relieved. Note all sheet is recrystallized except W and W~25Re.

(2) Currently available in duplex annealed condition for slightly improved strength

(3) Strength optimized by strain induced precipitation treatment. Penultimate anneal of 2900~
3000°F prior to final optimum cold reduction and recrystallization.
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TECHNICAL APPROACH

Ductility impairment is the major area of interest in evaluating refractory metal alloy weld-
ability. As a general rule the unalloyed base metal is very ductile but both alloying and
subsequent welding cause successive losses in ductility. Hence, in developing refractory metal
alloys, fabricability is traded off for strength,and success in this effort is measured in terms of
achieved strength versus decreased ductility. A sensible measure of ductility, and ductility
impairment occurring with welding is provided by the ductile-to-brittle transition temperature.
The transition behavior is characteristic of the body centered cubic metals and is easily meas-
ured by bend testing. Hence, bend testing was emphasized in this program to evaluate weld-

ability, follow thermal responses, and compare alloys.

INFLUENCE OF WELDING PARAMETERS

Early observations made on refractory metal alloys indicated that welding parameter selection
could greatly influence the bend ductile=brittle transition temperature. An evaluation of the
effect of weld parameters on bend ductile~brittle transition temperatures seemed imperative

and was established as a major welding objective. One important reason for investigating

these effects was to establish a uniform method of selecting welding parameters for preparation
of specimens in the successive evaluation phases of this program, i.e., the post weld anneal,
tensile, and thermal stability studies. For this purpose, the parameter series was expected to
provide an optimum set of weld parameters for each alloy as well as providing a broad based

alloy weldability comparison.

To maintain a materials oriented perspective, the effects of variation in weld freezing rate,
cooling rate, and unit weld length heat input were emphasized rather than current, speed,
and voltage per se. This approach tended to vary in a qualitatively predictable manner the
time-temperature relations controlling metallurgical reactions in the heat affected zone as
well as its size. Similarly, these factors most significantly affect the important weld char-
acteristics of grain and cell size, grain orientation, and solute redistribution (coring). Hence,

this approach was designed to identify essential structural interactions occurring with welding

12



and their effect on weld properties rather than merely to evaluate welding as a method of

joining these materials.

The parameter study was conducted on sheet material using automatic gas-tungsten-arc and
electron beam welding. Parameter boundary conditions were selected to encompass the
reasonable practical range of actual applications, and, within the limit of alloy to alloy
variability, to provide sound, uniform, and defect free welds. Typical weld schedules are

shown in Figures 1 and 2.

Weld freezing and cooling rates are closely associated with weld speed and clamp spacing.
Hence, these were chosen as variables for both processes. Gas tungsten arc welds were run
at 7.5, 15, 30, and 60 ipm with 1/4 or 3/8 clamp spacings. Electron beam welds were made
at 15, 25, 50, and 100 inches per minute with 3/16 or 1/2 inch clamp spacings. The wider
electron beam clamp spacing provided merely the weldment holding functions. The other
clamp spacings were beneficial in restricting the heat affected zones and increasing cooling

rates.

For arc welds, weld size was selected as a final parameter. Again, this selection was based

on thermal considerations, size being controlled by total heat input. Different weld sizes
were obtained by selecting appropriate welding currents. Weld target widths were set for
all the alloys at 0.11 inch and 0.18 inch. As well as enhancing the thermal approach, this
represented a practical method for comparing alloys since any given application requires a

fixed weld size regardless of the alloy selected.

All arc welding variables other than welding speed, clamp spacing, and weld size (amperage)
were not varied since they were considered of secondary importance both in realizing the
screening objective and evaluating alloy thermal response. The influence of arc gap, elec-
trode configuration, and shielding gas composition on weld configuration was recognized and
these were held constant. Electrodes were machine ground to a fixed configuration and were
extended one inch from the electrode holder with a 0.060 inch arc gap. Helium was used

exclusively for shielding.

13



CLAMP
SPACING, INCHES

/4 3/8

7.5

WELD SPEED '%/
INCHES/MIN.

N\
§

SMALL WELD SIZE
(0.11 INCH WIDE TYPICAL)

60

N\
3‘
NN

LARGE WELD SIZE
(0.185 INCH WIDE TYPICAL)

1/4  3/8 J
602538A

SELECTED WELD SETTINGS MARKED BY X
HELIUM SHIELDING GAS.
ARC GAP FIXED AT 0.06 INCH

FIGURE 1 - Typical GTA Sheet Butt Weld Schedule for Welding Parameter Study

14



BEAM DEFLECTION AMPLITUDE AT 60~
T-TRANSVERSE, L-LONGITUDINAL

WELD SPEED 2
INCHES/MIN.
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|
|
!
|
|
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!
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|
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% INCH CLAMP
SPACING
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ZERO —/ z 0.050L

NOTES:

1. BEAM ACCELERATING VOLTAGE = 150 KV, ALL WELDS
2, BEAM CURRENT SET AT 110 % OF FULL PENETRATION POWER

0.0507

FIGURE 2 - Typical EB Sheet Butt Weld Schedule
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To fully realize the advantage of high voltage (150 Kv) electron beam welding, weld size,
under any given set of conditions, was always minimized by focusing the electron beam to its
smallest diameter (highest energy density). Beam voltage was fixed at 150 Kv because pre-
liminary trials showed that varying voltage from 70 to 150 Kv, while using the ground rule
minimum beam diameter, did not influence weld configuration. Penetration trials at various
weld speeds were used to establish welding current which was set for 110% of full penetra-
tion. This provided an approximately constant weld size over the entire weld speed range
for any one deflection pattern. Cyclic beam deflection is required in most applications to
produce sound welds. Hence, cyclic beam deflection along with weld speed and clamp spac-
ing were the selected electron beam variables. Sixty cycle longitudinal deflection was
emphasized and generally used through the speed range. To obtain extremes of heat input,
transverse deflection at the lowest speed, and "zero" deflection welding at the highest speed
were also evaluated. Beam deflections of 0.025, 0.050, and 0.100 inch were used, but the

0.050 inch deflection was emphasized.

INFLUENCE OF SECTION SIZE

The manual plate butt welding evaluation was included in this program to ascertain the effect
of section thicknesses on weldability. In general, weldability requirements tend to become
more stringent with increased section thickness and the effect of welding on mechanical
properties becomes exaggerated. Hence, the plate evaluation represents an important phase
of this program and complements sheet welding in three ways: [t measures weldability on the
basis of the most flexible technique for fabricating structures; it is on the opposite end of the
heat input spectrum from EB welding; and it provides an overall measure of the effect of
section size on fabricability. Weld soundness, ductility, strength, and ease of welding were

the criteria of the plate weldability evaluation.
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POST WELD ANNEALING

A post-weld annealing study was conducted as an integral part of the weldability study.
Again, response was measured by shifts in the bend ductile-brittle transition temperature.
The ultimate optimum annealing schedule selected for each alloy was evaluated by room and

elevated temperature tensile testing as well as by bend testing.

WELDING PROCEDURES AND CONTROLS

Manual and automatic gas tungsten arc welding and automatic electron beam welding were
used in this study. These represent the applicable joining processes. Since refractory metals
suffer an adverse ductility response if contaminated, extreme care was taken to protect them
during welding. Contamination free welding is essential to assure credibility in alloy com-
parisons and is particularly important in the space power system application since alkali metal
corrosion resistance as well as ductility are impaired. From a practical standpoint, contam-
ination may occur during ground testing or even in the vacuum space environment during

long exposures. Hence, a further advantage of minimizing'confominaﬁon during fabrication
is that system life is lengthened. Consequently, a considerable effort was expended to assure

the adequacy of weld atmosphere controls and to improve the state~of-the-art in this area.

GAS TUNGSTEN ARC SHEET WELDING

Arc welding was conducted in a 50 cubic foot, vacuum=-purged weld chamber. This chamber
could be evacuated in less than one half hour to a conventionally acceptable pressure and
leak rate. However, a conventional pump down was found to result in unacceptable moisture

levels in the backfilled chamber. This occurs because of moisture outgassing from internal

surfaces. In this program overnight pumpdowns complemented by a heat lamp bake-out cycle
of about 200°F were used to provide an acceptable vacuum purge of <5 x IO-6 torr pressure
and <3 x ]0-5 torr/min leak rate.* Ultra-high purity helium was used for backfilling, provid-
ing a total active impurity level in the chamber atmosphere of about 1 ppm. During welding
both oxygen and moisture were continuously monitored. Welding was discontinued when either

impurity reached 5 ppm.

* Leak rate measured over 3 minutes with chamber valved off.
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Development and evaluation of the atmosphere measurement and control techniques have been
described by Stoner and Lessmann(s.) The effectiveness of these procedures can be gaged from
the weld chemistry data presented in Table 4. A representative sample of welds in 0.035-
inch sheet was analyzed for carbon, oxygen, and nitrogen pickup. Two welds from each of six
columbium alloys and three tantalum alloys were included. Random variation seemed to be
associated with the values obtained and no correlation was apparent between interstitial weld
pickup and atmosphere quality. The zero contamination points for carbon and nitrogen lie
within the 95% confidence intervals indicating that little, if any, pickup of these elements
occurred. The oxygen data display a definite bias indicating a loss of this element of between
15.6 and 39.4 ppm during welding in the high purity helium atmosphere. The sampling and
analyses techniques were reasonably random so that this loss could well be real. This eval-
uation demonstrated that individual chemical analyses are not sufficient, and that a reason-

able size statistic sample is required to assure adequacy of weld atmosphere control.

TABLE 4. Summary of Sheet Weld Chemical Surveillance

Analyzed Function,(])&) Mean Change Standard 95% Confidence
Change in Chemistry (ppm) Deviation Interval
S
AQ = Ow - OB -27.5 23.97 -39.36 to -15.64
AC = Cw - CB +4.69 12.6 -1.99 to +11.37
AN = NW - NB +6.375 20.27 ~4.36 to +17.12

(1) Subscripts: W - Weld; B - Base Metal

(2) Based on analysis of 12 Cb-base and 6 Ta-base alloy weld samples.
The sheet butt weld clampdown fixtures and traversing table are shown in Figure 3. A clamp
force of approximately 100 Ibs/in. is provided by this fixture. The clamp inserts are made of
molybdenum and the backup bar of copper. The stationary torch is water-cooled. Welding
current was provided by a three-phase direct current welder, equipped with a programmer
and high frequency arc starter. Straight polarity was used exclusively. The weld set-up used

is shown in Figure 4.
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FIGURE 4 - Weld Set-Up for GTA Sheet Butt Welds
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PLATE BUTT WELDING

All plate welding was accomplished by manual helium shielded gas tungsten arc welding. The
acceptable maximum chamber atmosphere moisture level was set at 10 ppm as compared with

5 ppm for sheet welding. This was a practical concession since increased oufgassing of interior
weld chamber surfaces occurred with the high heat input of plate welding. The shielding pro-
cedure adequacy can be gaged from the weld chemistry data, Table 5. Both base chemistry

and filler wire chemistry or a combination of these were considered in ascertaining contaminant
pickup levels. Oxygen increased between 7 and 12 ppm while carbon and nitrogen appear un-
changed. Based on the calculated standard deviations and confidence intervals, the observed

oxygen increase is probably not significant.

TABLE 5. Summary of Plate Weld Chemical Surveillance

- B Standard
Analyzed Function, Change Mean Change Deviation | 95% Confidence
in Chemisfry( (ppm) S Interval
AO = OW - Op +12.55 29.6 -2.15 to +38.35
AO=0 - O¢ +6.86 30.3 -10.44 to +24.16
w w
A0=0_-O Ave (B+Ew) +10.78 24.4 ~1.65 to +23.21
AC=C_ - Cpre(B+w) +2.33 21.45 | -11.17 to +15.88
AN = NW - NAve(B+Fw) +1.625 11.4 -4.32 to +7.58

O - Oxygen; N - Nitrogen; C - carbon.
(1) Subscripts: W - weld; B - base metal; Fw - filler wire.
(2) Based on analysis of 10 Cb~base and 6 Ta-base alloy weld samples.
To minimize moisture outgassing and for operator comfort during plate welding, extensive
internal chamber cooling was employed. A water-cooled convection heat exchanger, a

water-cooled platen, and a custom-designed water-cooled welding torch were used, Figure 5.
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FIGURE 5 - Torch and Internal Chamber Arrangement for Manual Plate Welding
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All flexible water connections on this tooling including the torch coolant lines were con-
!

structed from convoluted stainless steel tubing. Essentially zero moisture permeability was

realized. The torch is equipped with a radiation shield which is required because of the

increased thermal radiation of refractory metal welds.

Manual plate welding procedures for the different alloys were generally the same. All speci-
mens were prepared with the double "U" joint configuration shown in Figure 6. This is not
necessarily an optimized design but proved satisfactory for all the alloys investigated. The
root of the welds were tacked together with zero joint clearance and a fusion root pass was
applied from each side. Additional passes, two for the columbium base alloys and two or
three for the tantalum base alloys, on each side with filler wire added manually completed
the butt weld. Filler wire with an 0.082-inch diameter of the same composition as the base
metal was used. Weldment flatness was controlled by alternate welding on opposite sides of

the weld joint, and by introducing a camber into the joint before applying the root pass.

A typical plate welding schedule is shown in Figure 7.

ELECTRON BEAM WELDING

A 2-Kw, Model WO-2, Hamilton-Zeiss electron beam welder was used for sheet butt welding.
This is a variable high voltage unit capable of 150,000 volt operation with a maximum beam
zurrent of 13.5 ma. The beam has a fine focus control (0.010 inch diameter at full power)

and can be oscillated to 60 cps. A power density of 25,000 Kw per square inch can be realized.

leam current was carefully calibrated to assure that the indicated beam power was realized

it the workpiece. As with tungsten arc welding, overnight chamber pumpdowns were used

vith internal heat lamp bake-out. This provided pressures for welding in the low ]0_6 torr
ange. Aluminum holding fixtures were used for sheet butt welding. Since full beam penetra~
ion was used, a backup strip of the alloy being welded was placed in the fixture backup groove.

his protected the weld underside from vapor deposition by aluminum from the fixture.
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FIGURE 6 - Plate Buti Weld Joint Designs and Typical Macrosections



WELD 321 - SCb-291 Butt Weld, 3/8 Inch Plate.

Tack welded in center and at ends of joint. Positioned in clamp down

fixture. 155 amperes.

Fusion pass on side No. 1. 300 amperes. Continuous weld from one

end. One side of joint clamped, other side cantilevered.

Fusion pass on side No. 2. 280 amperes. Specimen supported along

each edge on copper blocks. Continuous weld.

First filler pass on side No. 2. 300 amperes. Continuous weld.
First filler pass on side No. 1. 300 amperes. Continuous weld.
Second filler pass on side No. 2. 280 amperes. Continuous weld.

Second filler pass on side No. 1. 280 amperes. Continuous weld.

FILLER WIRE REQUIREMENTS: 2-1/2 inch of 0. 082 diameter wire per

inch of weld.

FIGURE 7 - Welding Schedule for SCb-291 Butt Weld in
3/8 Inch Plate Material
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SPECIAL TEST PROCEDURES

Sheet Bend Testing. The bend test parameters are shown in Figure 8. Note that a consistent

weld and rolling direction orientation was maintained. A bend radius of 1t was used almost

exclusively. The bend test fixture is shown in Figure 9.

Testing procedures were fairly straightforward. Specimens were bent with as-welded surfaces
with the face of the weld in tension to an angle of 90 to 105° after springback at a number of
selected temperatures spanning the transition range. The bend ductile-to-brittle transition
temperature was identified as the lowest temperature at which a 90° bend was made without
cracking on the tension side of the specimens. Specimens were checked for cracks using

visual and dye penetrant inspection.

The transition behavior is followed best by making a load~deflection curve during testing and,
when a crack develops as indicated by a sudden load drop, stopping the test and recording thi:
bend angle. Obviously, this represents the maximum bend for the least ductile area of the
specimen. The first area where failure occurs, usually the weld or heat affected zone, is
easily identified. Transverse bend specimens were canted slightly on the supports so that the
bend axis was ot a small angle to the weld axis. This stopped specimens from bending in a
"U" shape and failing to conform to the punch radius and also produced a bending strain

throughout the weld cross section. All bend test data is presented in the appendix.

Plate Bend Testing. All plate weld bend testing was done at room temperature using single

point loading over a fixed test span. Each specimen was tested in three stages using success-
ively sharper punch radii. The three punches used have radii of 16t, 8t, and 3t. These are
used to produce successive respective bend angles of approximately 25°, 40°, and 140°, and
calculated outer fiber tensile strains of 3%, 6%, and 14%. Bend specimens were of conven-
tional size, 1-1/2 inches wide by 6 inches long. Welds were tested as welded without any
mechanical surface preparation. Examples of bend-tested weldments are shown in Figure 10

while the bend test fixture is shown in Figure 11.
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FIGURE 8 - Bend Test Parameters
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FIGURE 9 - Bend Test Fixture. Top, Open View.
Bottom, With Liquid Nitrogen Cryostat.
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FIGURE 10 - Plate Weldments Bend Tested at Room Temperature
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FIGURE 11 - Plate Bend Test Fixture
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Tensile Testing. For room temperature tensiles a strain rate of 0.005 in/in/min was used
through the 0.6% offset yield point, then 0.05 in/in/min to specimen fracture. The 0.05
in/in/min strain rate is used throughout the test at elevated temperatures. Room temperature
tensile specimens had two-inch gage lengths except for longitudinal plate weld specimens
which had 1-1/2 inch gage lengths. Elevated temperature tensile specimens had one inch
gage lengths. The gage section of sheet tensile specimens was 0.250 inch wide with an as-
rolled finish for base metal samples, and ground parallel surfaces for weld specimens. All
plate specimens had machined gage sections of 0.179 inch diameter. Elevated temperature
tests were run at pressures of 10-6 torr or less with specimen gage sections wrapped in tantalum

foil for additional contamination protection.

INVENTORY AND LOGISTICS MANAGEMENT

The evaluation of the weldability and the thermal stability of eight columbium, three tantalum,
and three tungsten base alloys required a very coordinated logistic system for specimen hand-

ling and identification.

Upon receiving alloys during procurement, all were coded for ease of identification and
handling. Quantity (size and weight) of sheet, plate and wire were checked against purchase
order requirements and customer certifications. Approximately sixty micros and chemistry
samples were removed from the as-received material to determine the rolling direction,
chemistry and metallurgical condition. Radiography and ultrasonics were used for evaluation

of questionable as-received sheet.

Drawings were made of the as-received quantity of material and as specimens were prepared
for welding it was indicated on the drawings and identified for alloy, rolling direction, and

set of parameters. This identification on over 300 welds was maintained through dye-penetrant,
radiography and ductile-to-brittle transition temperature bend testing. Eight bend tests (four
longitudinal and four transverse to weld direction) were prepared from each weld. Approxi-
mately 2300 bend tests were prepared and tested (580 bend transition curves) maintaining

weld identification and the position in the weld from where bend test samples were removed.
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A post weld annealing study was conducted as an integral part of the weldability study.
Both GTA and EB welding were evaluated. Approximately 120 bend transition curves were
generated in this study (1000 bend samples) maintaining identification of weld parameters,
type of welding, location of weld sample from original quantity, rolling direction, location

of bend test specimen from each weld, and annealing temperature.

One hundred transverse tensiles were prepared from base metal sheet and GTA welded speci-
mens using optimum weld parameters and annealing temperature. Again identification,
specimen location in the original sheet, weld records and test records were maintained
throughout blank and specimen preparation, welding inspection and testing. In addition,
approximately 300 tensile specimens and 2600 bend specimens were prepared for inclusion

in the 10,000 hour aging runs of TASK Ill. These were prepared approximately simultaneously
with the weldability specimens and required identical logistic handling to permit maximum

control and ultimately minimizing the risk of doubt in final analysis of results.
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IV. RESULTS

RESTRAINT TESTS

Restraint tests were used for convenience in screening alloys for hot tear sensitivity and for
demonstrating simple weldability. Sheet was tested using a bead-on-plate patch test, and
plate using a circular groove test. Both were welded manually. Typical welded specimens
are shown in Figure 12. Blank dimensions for these are shown in Figure 13. Sheet and plate
specimens were inspected visually and by dye penetrant tests. Sheet specimens were also

radiographed. Generally excellent weldability was demonstrated as summarized in Table 6.

The B-66 patch test had a positive dye penetrant and radiographic indication of a 1/8-inch
weld start crack. This was probably a hot tear. The W-25Re alloy proved to be difficult to
weld with failures occurring both by centerline cracking and heat affected zone cracking

parallel to the weld. The centerline cracks seem to be hot tears whereas the heat affected

zone cracks could be cleavage cracks. Unalloyed tungsten was satisfactorily welded.

No particular difficulty was encountered in welding nor were defects detected in the circular
groove plate weld specimens. However, not all the alloys were available as plate, see Table 2.
Specimens were welded with a fusion root pass to increase the effective weld depth before

completing the test with two manual filler passes.

DUCTILITY RESPONSE TO WELDING

Sheet Welding. Using the approach previously described, the alloys were evaluated with
respect to their response to weld parameter variation. Bend ductility of butt welds, as mea-
sured by the bend ductile-brittle transition temperature (DBTT), was used to measure the effect
of weld variables. The.parameter study was restricted to welding 0.035-inch sheet. Twelve
welding conditions were used for each welding process in studying each alloy. Approximately

580 bend transition curves, requiring 2300 bend tests were generated in this study.
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FIGURE 12 - Sheet and Plate Weld Restraint Specimens
Top: Circular Groove Test in FS-85 Plate.
Bottom: Bead-on-Plate Patch Test in T-111 Sheet.
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(8) CIRCULAR GROOVE WELD RESTRAINT TEST SPECIMEN

FIGURE 13 - Weld Restraint Test Specimens for 0.035 Inch Sheet
(a), and 0.375 Inch Plate (b).
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A summary of the weld parameter evaluation is shown in Figure 14. This figure shows the
range, or total spread, in bend transition temperatures obtained in the weld parameter study
for each alloy and process. Results of both longitudinal and transverse bend tests of every
weld are included. This is a "gross effects" summary in which no allowance has been made
for defected welds, except that in some cases, such as full length centerline tears, no tests
could be run. Since weld defect variability is a material characteristic, this approach
provides an uncluttered summary and a sensible comparison of alloys. An appreciation of alloy
limitations is desirable and the data have been recast in these terms in the next section of

this report.

All the tantalum alloys have excellent weld ductility and unqualified weldability. On the
other hand, the tungsten alloys have poor weldability, primarily as a result of brittleness. Sig-
nificant variability was demonstrated by the columbium alloys. In this group FS-85 is a stand-
out because of its narrow transition range and, hence, consistent weldability coupled with
particularly high creep strength as reported by Titran and Hal|(7.) The solid solution alloy, SCb-
291 is also very ductile, but has poor elevated temperature strength. C-129Y has the best overall

ductility demonstrating the beneficial effect of yttrium but is not particularly strong in creep.

The superior weldability of the tantalum alloys is even better than is implied by the summary
since the few failures in the tantalum alloys were generally ductile tears occurring at or near
the 90 degree target bend angle and of the minimum test temperature, -320°F. Columbium
alloys, on the other hand, generally exhibited full section, low strain cleavage fractures at
the ductile-brittle transition. However, whether cleavage or ductile tearing, the DBTT was
identified as the lowest temperature where no defects were detected. Hence, the transition
temperatures indicated for the tantalum alloys were not “true" transitions but rather the
temperature at which a strain limitation for ductile tearing wos exceeded. This difference in

alloy behavior is illustrated in Figure 15,
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100 — /

, DEGREES

BEND ANGLE

MIXED MODE BEHAVIOR EXHIBITED
BY COLUMBIUM ALLOYS D43, C129Y
(EB ONLY), AS55, AND THE 25 % RE
TUNGSTEN ALLOY EB WELDS.

/+'+"+'O'O"'
/7
75 |~ 75 F + FOR AS55 ARC WELDS
TYPICAL FOR COLUMBIUM
50 ALLOY WELDS IN FS 85, 66, X0 |
D43Y, C129Y (ARC WELDS), PARTIAL OR FULL
+ Cb752 BREAK NEAR 90°
25 |- 25
+/

”
0 ] | 0

(a) T —— (b) T —p

TRUE DUCTILE-TO-BRITTLE INDEFINITE TRANSITION

TRANSITION BEHAVIOR BEHAVIOR
100 — 100

+ —O—O—0—
75 = NO BREAK OR 75 - \SLIGHT SPECIMEN,
CRACK AT -320°F TEARING AT -320°F
50 |- 50 }—
TYPICAL FOR TANTALUM ALLOY WELDS
25 25 r
0 L L 0 [ I
-300 -200 -300 -200

(c)
NO TRANSITION BEHAVIOR DOWN TO THE LOWEST TEST TEMPERATURE,-320°F (LIQUID N2)

FIGURE 15 - Categorized Weld Bend Transition Behavior
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Plate Welding. Because of the large size of plate weldments, and thus high material cost, the
scope of this effort was more restricted than for the sheet weld evaluation. Nine alloys,
including all the columbium and tantalum alloys except D-43Y and AS~55 were evaluated in
the plate welding study. Approximately thirty—six feet of plate welding was required. Plates
were welded by two different weld operators and evaluated primarily by bend and tensile test-
ing in both the longitudinal and transverse directions. One post weld anneal for each alloy
was also selected, based on sheet welding results.  All of the alloys were successfully joined
using the procedures described.earlier in this report. B-66 was difficult to weld because of a
hot tearing tendency which was overcome only by applying strong tack welds at each end of

the weldments before making the rest of the weld. Tensile test results are presented later in

this report. Room temperature bend tests are summarized in Figure 16.

To appreciate the plate weld bend test results, Figure 16, one must realize that these were run
at room temperature. Loss of ductility indicates that the weld ductile-to-brittle transition
temperature is above room temperature. On the other hand, sheet weld ductility responses
were defined by a quantitative shift in bend transition temperature. For the more fabricable
alloys, section size obviously has little effect in degrading ductility. However, with the less
weldable alloys, adverse ductility responses to welding were exaggerated in plate welding.
Again, the tantalum alloys display excellent ductility. Tantalum alloy failures had ductile
tears whereas all columbium alloys failed by full section cleavage. SCb=291 and FS-85 are
reasonably ductile and to a lesser extent C-129Y. Ductility decreases with D-43, Cb-752,
and B-66. This order is much like that demonstrated in sheet welding except the relative
position of D-43 has improved. B-66 welds were particularly brittle as was Cb-752. Im-
provement was realized in D-43 primarily through a favorable response to past weld anneal-
ing. The single post weld anneals for plate welds are listed in Table 7. It is unlikely that

these are optimum anneals.
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TABLE 7. One Hour Post Weld Annealing Temperatures
Used on Plate Weld Specimens

Ta-10W None

T-111 2400°F
T-222 2400°F
B-66 1900°F
C-129Y 2400°F
Cb-752 2200°F
D-43 2400°F
FS-85 2400°F
SCb-291 1900°F

ALLOY WELDABILITY LIMITATIONS

An excellent measure of weldability in the conventional sense was provided in the weld
"ductility response" study. The inherent flexibility in selecting weld parameters which pro-

duce sound welds can be gaged from the data summarized in Table 8.

The percent of acceptable welding conditions are listed for each alloy along with the defect
source of unacceptable welds and ductility range of acceptable welds. In this table the
ductility range is a "net effects” summary in that defected welds are ignored. The relative
alloy positions in this summary remain unchanged as compared with the "gross effect” summary,

Figure 14,

An electron beam process limitation for most alloys at the highest welding speed, 100 ipm,
was evidenced by welds having unacceptable contours. Some alloys also welded poorly at
other electron beam parameter combinations. In this respect B-66 welded with difficulty

presumably because vanadium tends to boil off more readily than other alloying elements.
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B-66 also welded with greater difficulty in both manual and automatic arc welding due to a
hot tearing tendency. This alloy is a classic example of this effect which results from an
excessive freezing point depression and .|iquidus-so|idus separation. A theoretically derived
compositional correlation was demonstrated by Lessmann based on the relationship of Mo-V-Z,
confents(.s) A ratio v greater than 10.20 is required for satisfactory weldobility: The
material evaluated in ffrlis program was marginal, R = 10.06, in this respect. At the highest

arc welding speed B-66 showed evidence of microshrinkage, Figure 17.

Arc welds in C~129Y welded at the highest speed had gross shrinkage defects indicating a limi
tation in welding this material, Figure 17. D-43Y tended to hot tear along the weld centerlin:
have porosity, and crack (transverse) during welding. Porosity also occurred extensively in the
unmodified D-43, Figure 17, but was controllable as explained later in this report by special
joint preparation. All three yttrium modified alloys demonstrated a weld centerline weakness,
the source of which is not apparent but is presumed to be an effect of yttrium. This occurred
in D-43Y by hot tearing, in AS-55 transverse bend specimens which in several instances failed
at the weld centerline at low strain along what appeared to be a single grain boundary, and

in one C-129Y weld which could be torn by hand along its centerline. The C-129Y weld
separated at the weld center along the boundary of a peculiar grain oriented axially in the

weld direction, Figure 17. Low elongation tensile failure along this boundary at 2400°F was

observed as related later in this report.

Except for hot. tearing in B-66, plate welding was accomplished with relative ease with all

the available alloys.

TUNGSTEN AND W-25Re SHEET WELDABILITY

The tungsten alloys are categorized among the refractory metal alloys by their inferior low
temperature ductility. This is apparent from the bend test summary of Figure 14, Despite

the handicap of poor ductility, tungsten alloys may be employed in special high temperature
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FIGURE 17 - Defected Gas Tungsten Arc Weld Microstructures for Alloys Displaying
Particular Weldability Limitations. Top Left: B-66 Wzlded at 60 ipm
Displaying Microshrinkage Voids. Top Right: Gross Centerline Shrinkage
in C-129Y Welded at 60 ipm. Bottom Left: Location of Single Case of
C-129Y Centerline Hot Tearing along Peculiarly Oriented Center Grain.
Bottom Right: Porosity in D-43 Weld.
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applications and were therefore included in this evaluation. Tungsten retains a certain degree
of ductility and fabricability in the wrought and stress relie\)ed conditions. Hence, the stress-~
relieved structure was selected for this study as opposed to the recrystallized condition obtaine-
in the tantalum and columbium alloys. Also, in tungsten alloys, the strengthening effect of a
cold worked structure can be appreciated at temperatures exceeding 2000°F making this
structure attractive in many potential applications. The W and W-25Re sheet was converted

from arc cast ingots. Tungsten alloys were evaluated as sheet only and not in plate thickness.

The effect of preheat in TIG welding was selected as an additional parameter in evaluating
the tungsten alloys. Preheating was accomplished with heaters placed in the backup bar of
the welding fixture. This provided a preheat of 550°F. Sample preparation for both welding
and, after welding, for testing was considerably more complicated than for columbium and
tantalum alloys. Specimen blanking by shearing was unsatisfactory because of edge cracking
and possible delamination. Warm shearing at +600°F reduced this problem but did not eliminat
it. Consequently, weld specimen blanking was accomplished by electro-discharge machining
(EDM) and test specimen blanking was accomplished using an abrasive cut-off wheel. Edge
finishing for butt weld specimens was accomplished by stacking and wet edge grinding prior

to pickling and welding. The unalloyed tungsten and tungsten alioy weld blanks were vacuum
degassed for 1 hour at 2000°F after pickling and just before welding. The pickling solution
employed for tungsten and tungsten alloys consisted of 9 parts hydrofluoric acid and 1 part

concentrated nitric acid.

Unalloyed Tungsten. Out of 10 parameter combinations employed for GTA welding tungsten,

6 welded successfully. The other 4 contained cleavage cracks. Four out of 6 good welds

were obtained using a 550°F preheat indicating that this may be beneficial. Weldability
decreased with increased welding speed such that satisfactory welds were obtained at 15 ipm
but not at 30 ipm. For comparison, the columbium and tantalum alloys generally were weldabl:
to 60 ipm or faster. The manual patch test produced in tungsten proved to be defect-free

even though welded without preheat. A typical gas tungsten arc weld microstructure is shown
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in Figure 18, The large full section grains of the weld are largely responsible for the poor
ductility of welds as compared with stress relieved base metal. The weld hardness traverses
(see Appendix), indicate a weld hardness of about 375 DPH and base metal hardness (stress
relieved) of about 475 DPH. A peak hardness of near 500 DPH at the base metal edge of the
heat affected zone implies that an aging or solutioning response is induced in the base metal
by the weld thermal cycle at the approach of recrystallization. This is most likely an intersti-
tial effect realized as a result of low interstitial solubility in tungsten. A post weld stress

relief of 1 hour at 2560°F (1400°C) proved marginal in improving weld ductility. Stress
relief bend test data is included along with the as-welded data in the Appendix.

Tungsten weldability was poor in electron beam welding both as a result of brittle cleavage
occurring during welding at higher speeds and because of a general underside delamination
problem associated with this process. The delaminations occurred, as shown in the microstructure
of Figure 19, on all welds. Cleavage cracking occurred in a number of characteristic modes

as shown in Figure 20. In this figure cleavage cracks are shown for weld No. 3 (centerline
crack), No. 4 (transverse), No. 7 (full section transverse, centerline, and arrested transverse),
and Nos. 10 and 12 (peculiar "X" pattern arrested cleavage). The severity of weld cracking
increased with welding speed. The numerous centerline defects are caused by the typical

root delaminations.

W-25Re. Like unalloyed tungsten, W-25Re was welded with difficulty. Welding became
increasingly difficult with hither welding speeds. Transverse arrested cracks (weld and heat
affected zone only) occurred in one 15 ipm weld and in all three 30 ipm welds. One 7.5 ipm
weld contained a centerline crack which may have been a hot tear. Such cracks were also

observed in welding patch tests.

Bend specimens were cut from sound GTA welds or apparently sound sections of defective
welds. The effect of weld parameters on weld ductility in this alloy is described by the

summary presentation of Figure 21. The data provide a reasonably consistent trend which
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13,582 Weld Structure 80X

13,582 Heat Affected Zone - Base Metal Structure 80X

FIGURE 18 - GTA Weld Structure in Unalloyed Tungsten, Weld No. 1
(Welded at 7.5 ipm without Preheat)
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13,595 Weld No. 1 2.98 Kilojoules/inch at 15.6 ipm 80K

13,596 Weld No. 4 3.24 Kilojoules/inch at 15 ipm 80X

FIGURE 19 - Typical Sections of Electron Beam Welds in Unalloyed Tungsten
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Weld No. 1
Speed - 15 ipm
2.98 Kilojoules/inch

Weld No. 4
Speed - 15 ipm
3.24 Kilojoules/inch

Weld No. 7
Speed - 50 ipm
1.19 Kilojoules/inch

Weld No. 10
Speed - 15 ipm
3.12 Kilojoules/inch

Weld No. 11
Speed - 50 ipm
1.30 Kilojoules/inch

Weld No. 12
Speed - 100 ipm
0.76 Kilojoules/inch

FIGURE 20 - Typical Dye-Penetrant Results of Electron Beam
Welds in Arc Cast Unalloyed Tungsten Sheet
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relates the dependent variables affecting weld thermal cycles (heat input per unit weld
length, weld size, preheat and weld speed) to ductility. An overall trend of improved
ductility with decreased unit length heat input is apparent. Decreased heat input is achieved
with decreased weld size and/or higher welding speeds for any one process, or it can be
further decreased, as shown, by employing the electron beam welding process. The ductility
of electron beam welds demonstrates excellent correlation with the heat input trend associated
with gas tungsten arc welding. The selection of welding parameters must naturally be con-
sistent with good weldability. In this respect, an observed trend towards less weldability at
higher speeds is reflected in decreased ductility in several welds which presumably results
from defected structures. Preheating appears to have a beneficial effect on weld ductility
but not on weldability. As with unalloyed W, a post-weld stress relief of 1 hour at 2560°F
(1400°C) was only marginal in improving ductility.

An interesting ductility/weldability correlation with microstructure was observed. Weld
ductility and weldability were poorer for welding conditions under which twinning occurred in
the cast weld structure. This is shown in Figures 22 and 23. The preheated 7.5 ipm weld did
not twin, whereas the non-preheated 7.5 ipm weld did twin and also had poorer ductility,
Figure 22. Increased twinning, and less ductility, was observed in the 3 ipm, no preheat
weld. Increased weld speeds, 15 and 30 ipm, even with preheat had twinned structures and
less ductility, Figure 23. Variability of twinning is probably indicative of variability of weld
induced residual strain since twinning is a strain associated phenomena. Hence, these results
imply that the observed variability in weld ductility in this system is most likely related to

the effect of weld parameters on stress distribution, as opposed to metallurgical structure.

Electron beam welding of W~25Re was accomplished with comparative ease. As welded
ductility was disappointing. The best ductility was obtained using slow welding speeds (less
than 15 ipm) and wide clamp spacing. This again implied that residual stresses contributed
significantly to ductility impairment. An improvement in bend-ductile-brittie transition

temperatures of about 400°F were realized with a 2560°F/1 hr. stress relief confirming the
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FIGURE 22 - Photomicrographs of Cast Weld Area in Gas Tungsten Arc Welded W-25Re Sheet
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13,590 Weld No. 6; 15 ipm
Preheated; 8.9 Kilojoules/inch

13,591 100X 13,591 300X
Weld No. 9; 30 ipm; preheated; 6.28 Kilojoules/inch

FIGURE 23 - Photomicrographs of Cast Weld Area in Gas Tungsten Arc Welded W-25Re Sheet
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sign.ificanf influence of residual stresses. During EB welding butt joint cambering occurred
causing seam spreading if tack welds were not employed. Joint spreading in W=25Re is an

opposite trend to that observed in welding the tantalum and columbium alloys.

THERMAL WELD RESPONSES IN COLUMBIUM ALLOYS

As indicated in the technical approach, the effect of welding as a variable thermal process
was emphasized in the thermal response study. A summary of heat input requirements
developed during this study show that a judicious selection of welding parameters was made,
Figure 24. The curves in this figure are for fixed size welds. A considerable increase in
efficiency is realized across the welding speed range, and the effectiveness of narrow-clamp
spacing in removing heat is evident. Hence, the selected weld parameter variations could be
expected to greatly influence the time-temperature dependent reactions which control metal-
lurgical response, and therefore, mechanical properties. In this figure, electron beam welding
is placed in proper overall perspective as a joining method requiring a minimum sized weld
and, hence, minimum heat input. The size advantage of electron beam welds over gas tungsten

arc welds is shown in Figure 25.

Welding conditions in this study were not duplicated. In a statistical sense this was most
efficient both in terms of cost and total coverage. Also, this permitted investigation of a
greater range of welding variables. In interpretation of data, this approach is usually less
definitive with respect to any one particular effect, but more comprehensive in cross checking
any one conclusion. Hence, the test data were reviewed as a continuum for proper interpre-
iation. Columbium alloy responses were successfully evaluated while the tantalum alloys
displayed excellent ductility under all welding conditions and were unresponsive within the

-320°F bend test limit. Tungsten alloys had extremely poor ductility and were evaluated as

sreviously described.

55



WELD HEAT INPUT, Q, JOULES/INCH OF WELD x 10'3
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Q GAS TUNGSTEN ARC WELDS,  APPROXIMATE B
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\ UNALLOYED W 6170
A\ \ UNALLOYED W, 6170 -
\ 550 °F PREHEAT '
- bo) W-25 Re 5600
TANTALUM ALLOYS 5400 .
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FIGURE 24 - Observed Heat Input Requirements for Welding 0.035 Inch Sheet as a

Function of Welding Speed, Weld Size Constant. Typical Tungsten Arc
Weld Width: 0.185 Inch. Typical Electron Beam Weld Width: 0.035 Inch
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The following ground rules were used in analyzing the columbium alloy data. These were

followed in the indicated sequence to minimize bias in data reduction.
1. Only sound welds were included.

2. Bend transition temperatures were interpreted in terms of true transitions,
i.e., the test temperature below which ductility is severely impaired as
opposed to the lowest “no defect” temperature.

3. The bend transition temperatures were rationalized for each alloy on
the basis of its most ductile weld. Hence, alloys are compared in this
study on the basis of their individual deviation from optimum (or change
in) transition temperature.

4, longitudinal and transverse bend transition temperatures were averaged
for each weld. The effect of averaging was remarkable since independent
analyses resulted in largely unreconcilable trends. This approach apparently
provides strain vector averaging across the plane of weakness the orientation
of which can vary considerably with welding parameters and between alloys.

Electron Beam Welds. The typical thermal response of columbium alloys to total heat input

in electron beam welds is depicted by the FS-85 behavior shown in Figure 26. Total heat
input over this range had little effect on ductility. In reviewing alloy behavior, different
types of beam deflection patterns were observed to produce families of curves rather than a
simple single response. Hence, as implied in Figure 26, an important conclusion developed,
namely, that technique variations in electron beam welding must be treated as different

welding processes.

The response in Figure 26 is typical except that yttrium modified alloys did not display any
difference between longitudinal and transverse beam deflection as observed for FS-85. A
clamp spacing effect is apparent in this figure. This may result from larger weld (or weld
plus heat affected zone) width since at any one welding speed the same power input was
used but larger welds were obtained with the wider clamp spacing. A chill effect was
obviously realized using the narrower clamp. A weld size effects summary for all the

columbium alloys confirms the tendency of larger welds to be less ductile, Figure 27.
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However, the larger welds were made at wider clamp spacings so it isn't clear if ductility
loss occurs with increased weld size, increased heat cffe_cfed zone size, or a combination
of both. The lower ductility of B-66, AS-55, and D-43Y at the 50 ipm welaiﬁg _s;)eed pro-
bably results from microstructural defects. These were not detected in non-destructive tests
but their presence can be implied from general difficulties encountered in tungsten arc

welding B-66 and D-43Y at higher speeds (30 to 60 ipm).

Gas Tungsten Arc Welds

The effect of gas tungsten arc weld parameters on columbium alloy weld ductility was

rationalized by grouping the alloys as follows:

1. Solid solution strengthened alloy: SCb-291
2. Solid solution plus dispersion strengthened alloys: FS-85, Cb-752, D-43, and B-66.
3. Yttrium modified alloys: C-129Y and D-43Y (these are also solid solution plus
dispersion sfrengfhenéd).
AS-55 welds are not included because they displayed atypical bend transition behavior,
Figure 15,

Group behavior, as reflected by changes in weld ductility, were reviewed for general
effects of weld speed (freezing rate), clamp spacing (chill effect), and unit weld length

heat input. Meaningful relationships which lent themselves to a significant technical

interpretation were observed.
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1. Solid Solution Alloy, SCb-291

Particular independent effects of weld speed and unit length heat input were not apparent

but a pronounced and unexpected weld size effect was observed: ductility improved with
increasing weld size. With the particular weld fixturing employed (fixed clamp spacing)
this effect can be interpreted in a different way: ductility improved with a decrease in
heat affected zone width. This approach was taken in plotting the data shown in Figure 28.
Metallurgical observations in this program justify the general premise of this interpretation:

i.e., weld width + heat affected zone widths = clamp spacing.

Weld size is a dependent variable determined by selections of welding power (amperage)
and welding speed for any particular mechanical holding arrangement. Neither speed nor
power input were independently related to ductility. Consequently, it can be reasonably

inferred that heat affected zone size is a major factor influencing weld ductility.

2. Solid Solution Plus Dispersion Strengthened Alloys: FS-85, Cb-752, D-43, and B-66

Total heat input effects for the solid solution plus dispersion strengthened alloys are summar-
ized in Figure 29. The two clamp spacings are plotted separately. Fitting curves for the 7.5
ipm welding speed was least successful for all the alloys. This results from a greater process

sensitivity at this welding speed as indicated by the slope of the heat input curve, Figure 24.

For reference purpose, the general area of electron beam respanse is also shown. The electron
beam and tungsten arc weld data show excellent fit with respect to a ductility threshold at a
total heat input of about 3000 joules/in. of weld. Ductility is less above this energy input

threshold regardless of weld speed. This is indicated by an increase in ductile-to-brittle
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CHANGE IN BEND TRANSITION TEMP., °F

+300 T | | T I T I I | l | T
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3/8 INCH CLAMP SPACING
COMBINED DATA FROM SHEET
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+200 -
7.5 IPM
O
+100 a % —
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+ 300 °F
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+100 — A / ]
e ®
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o L 1/4 INCH CLAMP SPACING, COMBINED _|
DATA AS IN UPPER CURVES
// ELECTRON BEAM WELDS, LONGITUDINAL 60~BEAM DEFLECTION,
-100 - 7] FALL IN THIS AREA. SHOWN FOR PROCESS REFERENCE -
i L | | | | | | | L1 | | _
0 1 2 3 4 5 6 7 8 9 10 12 13 14 15

HEAT INPUT, @ JOULES/INCH OF WELD x 10-3

FIGURE 29 - Effect of Gas-Tungsten-Arc-Weld Heat Input on Ductility in the
Solid Solution plus Dispersion (Reactive Element) Strengthened
Columbium Alloys. Welding Speeds as Indicated.
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transition temperature. However, for any one speéd, an inversion frend producing improved
ductility at higher heat input is also evident. Higher heat input naturally produces larger
welds. The effect of weld size on ductility, Figure 30, confirms this inversion effect. The
improvement in ductility with increasing weld size for the larger welds is similar to the
behavior exhibited by the solid solution alloy, SCb-291. The threshold behavior, however,

represents a significant difference between these two groups.

3. Yttrium Modified Alloys - C-129Y and D-43Y

The yttrium modified alloy behavior is shown in Figures 31 and 32. No apparent clamp spac-
ing effects were noted so these were not plotted separately. Ductility in this group appears
to be relatively stable as compared with the other alloys. The decreased ductility of the 7.5
ipm welds appears to be a manifestation of a similar heat input threshold effect as observed
for the other dispersion strengthened alloys. This threshold occurs at about 7000 joules/in.
(compared with 3000 joules/in. for the second group of alloys). The threshold very nearly
divides the heat input requirements for 7.5 ipm welds from that required for 15 ipm welds
(compare Figure 24 and31). Hence, in Figure 32, not much of a weld size effect is noted.
Instead, the 7.5 ipm welds have poorer ductility reflecting the "threshold" heat input phenom~
ena. In interpreting the yttrium modified alloy behavior in terms of a thermal threshold, the
two least ductile of five 30 ipm welds were assumed to be of questionable quality and were
ignored. This was reasonable based on increased difficulty of welding these alloys at higher

speeds.

A Thermal Response Hypothesis. The weld size effect in SCb-291, the "threshold" heat input

effect in the other alloys, and the ductility inversion with increasing weld size in the solid
solution plus dispersion strengthened alloys all appeared significant. Interpretation of these
trends provides a metallurgical appreciation of the observed weld responses. Intuitively this
required a single general hypothesis. An interpretation based on probabie differences in
kinetics of grain growth in the heat affected zone, consequent grain size, and gross size of

the heat affected area seems to satisfy the observed behavior. These factors are controlled by
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variation of weld induced time-temperature cycles. For this interpretation, a metallurgical
appreciation of grain growth and size effects is required along with a mechanical concept

of the thermal conditions during welding.

Increased grain size in refractory metal alloys generally results in an increase in ductile-to-
brittle transition temperature. This is shown for B-66 in Figure 33. Hence, grain size is a
reasonable indicator for following ductility responses. In solid solution alloys one would
expect grain growth to be a continuous process. However, in alloys containing a dispersed
second phase, grain growth may be a discontinuous process. This has been observed by
Bechfolé”in arc cast molybdenum, Figure 34. Exaggerated grain coarsening in molybdenum
occurred simultaneously with the dissolution of large molybdenum carbide precipitates. This
apparently caused unpinning of grain boundaries, and rapid grain coarsening. (Obviously,
for this mechanism to occur the molybdenum cannot be considered strictly as "unalloyed".)
The time~temperature dependence of discontinuous grain coarsening is also obvious in

Figure 34,

Grain growth in the solid solution alloy, SCb-291, should be a continuous process. Hence,
the continuous improved ductility occurring with decreased heat affected zone size, Figure
28, is a reasonable grain size effect. A mechanical concept for heat affected zone develop-
ment is depicted in oversimplified form in Figure 35. A rough approximation of the maximum
transient thermal gradients inthe heat affected zones of small and large welds are shown.

For larger welds the thermal gradient through the heat affected zone is larger and the width
of this zone is smaller. Hence, heat affected zone size is decreased, with increasing weld
size. Further, the cooling rate for large welds is faster resulting in less grain growth. The
net result is a depression of heat affected zone development, and improved ductility, with

increased weld size using fixed clamp spacing.
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-ing the same general line of reasoning a rationale can also be developed for the threshold
'wer input effect observed for the dispersion strengthened alloys. As indicated in the alloy
scussion, strengthening in alloys containing reactive elements is achieved in part through

: formation of stable precipitates. These are based on zirconium or hafnium reactions with
sidual interstitials, primarily oxygen and carbon. These precipitates enhance strength and
ibilize grain size. A reasonable possibility of discontinuous grain growth as observed for
slybdenum, Figure 34, exists in these systems. Hence, the threshold behavior represents a
quirement for a critical heat input for dissolution of stable precipitates above which grain
owth occurs rapidly. Metallurgical observations of structure and hardness in these systems
pport this position. Also, a distinguishing characteristic of electron beam welds is their
inificantly smaller heat affected zone or complete absence of grain growth in the heat
fected zone. This is shown for FS-85 in Figure 36. This observation clearly fits the "threshold"
ncept as it applies to the observed behavior in Figure 29. This also agrees with a previous

(8)

ierpretation by Lessmann' "’ attributing the difference in electron beam and 'fungsfen-arc

:1d ductility to differences in heat affected zone development.

e behavior of the yttrium modified alloys lends further general support to this line of
isoning. Improved fabricability in alloys containing yttrium is generally attributed to

iin refinement and stabilization caused by the presence of higHIy stable yttrium compound
cipitates. The shift in "thermal" threshold from 3000 joules/in. for the yttrium-free alloys
7000 joules/in for the yttrium modified alloys reflects increased grain stability.

summarize: Basic ductility of welds in columbium alloys is less than that of base metal.
ricble degradation of ductility occurs depending on the selection of welding parameters.
is variability depends primarily on the weld thermal cycles as measured by their influence
the heat affected zone. In this respect, thermal and mechanical factors combine to
mulate or depress heat affected zone development. Differences between alloys seem to
related to probable differences in the kinetics of grain growth mechanisms. Although

=se considerations lend themselves to a rationalization of the observed data, grain size,

r se, is probably not so important as the factors which influence grain growth (also sub-

ucture or cell size) phenomena. Hence, grain growth as used in this context is a
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FIGURE 36 - Interface of Gas Tungsten Arc Weld (top) and Electron Beam Weld (bottor
in FS-85, showing Thermal Effects of Higher Arc Weld Heat Input:
Increased Weld Cell Size, Heat Affected Zone Grain Growth, Heat
Affected Zone Size, and Dissolution of Fine Precipitates Along Ghost
Structure in the Heat Affected Zone
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iefallurgiccl indicator. Metallographic observations demonstrate that grain boundaries at

ield interfaces cross the interface. Hence, the influences of grain size or the factors reflected
;rough grain growth are not confined to the heat affected zone but are also carried over into
1e weld. This is important since the bend data were rationalized on the basis of heat affected
bne development while fractures frequently appeared to initiate in the cast weld structure.

ust below the bend transition temperature, cracks usually propagated through both welds and
eat affected zone with frequent arrests in the base metal. Hence, the time-temperature
ypothesis based on heat affected zone development seems also to influence, perhaps indirectly,
1e ductility of the cast weld structure. This interplay of properties between cast metal and

djacent thermally disturbed base metal deserves further investigation as a general area of

relding technology.

\n inspection of 30 welds of each alloy prepared for thermal stability studies indicated that a
iorosity problem existed in tungsten-arc butt welds made from sheared and pickled blanks of
1.035-inch sheet. Inspection results showing a comparison of alloy porosity sensitivity are
ummarized in Table 9. In this check severe porosity was found in D43 (D43Y) and moderate
»orosity (2-3 pores/in.) in C-129Y, Cb-752, and B-66. No porosity was noted in Ta-10W and
snly minor amounts in T=111, T-222, FS-85 and SCb-291.

since this problem was of a variable but general nature, joint preparation and welding tech-
riques were implicated. Further, the alloy-to-alloy variability indicated that porosity formation
s also dependent on differences in innate alloy characteristics. The alloy differences are not
-eadily defined, and could not be within the scope of this program. To circumvent this limita-
‘ion, the most sensitive alloy, D-43, was employed to investigate this problem. This approach
appeared rational since it was assumed that a solution to porosity in the worst alloy would be

fully applicable to the others, and the worst alloy would provide the best indicator for process

development.

The relative importance of joint preparation and welding procedures was easily determined by
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TABLE9.. Gas Tungsten Arc Weld Porosity Count

Alloy Pores/in. )
Ta -10W 0
T-222 0.034
T-111 0.051
FS85 0.092
SCh291 0.83
C129Y 2.0
B66 2.6
Cb752 2.9
D43 8.4
D43Y 8.0

(1) Based on approximately 15 feet of weld
using optimum weld parameters based on
bend ductility, except D-43Y for which
the weld parameter series count is shown.

producing bead~on-plate welds. A check using D~43, D-43Y, C-129Y, Cb-752, and SCb-29]'i. .

showed that bead-on plate welds contained no porosity. This demonstrated that butt joint pre-

paration, not welding procedure, was the source of porosity.

Mechanical and chemical edge preparations were evaluated using D-43 sheet. These tests
are summarized in the flow chart of Figure 37 while the respective pickling and rinsing pro-

cedures are listed in Table 10. The results, as determined by a porosity count are also shown

in Figure 37.
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FIGURE 37 - Process Flow Diagram for Weld Porosity Evaluation of D-43
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TABLE 10, Pickling and Rinsing Schedules for Weld
Porosity Evaluation (See Figure 23)

P1

P2

P3

P4

R1

R2

Pickling Solution, v/o

25% H2NO3, 25% HF, HZO balance

20% H2NO3, 15% HF, 10% H2SO HZO balance

4’
25% H2NO3, 8% HF, 25% H2504, HZO balance
25% H2NO3, 15% HF, 25% HZSO4’ H2O balance

Rinsing Schedules

Fast transfer from pickle bath to rinse
30-second boiling distilled water
1-minute flowing cold water rinse
5-minute boiling distilled water

Ethyl alcohol rinse

S 0 xwDd -

Hot air flash dry

1. Fast transfer from pickle bath to rinse

10-minute rinse in cold flowing tap water

3-minute rinse in boiling distilled water

Ethyl alcohol rinse

o R w0

Hot air flash dry

Test number 4 (see Figure 37) represents the normal shear-pickle-rinse-weld sequence
employed in the early phases of this program. The improvement in porosity over the thermal
stability welds (3.2 per inch versus 8.4 per inch, see Table 9) probably resulted from greater
care in rinsing. Interestingly, unpickled specimens, tests 1 and 2, using only sheared and

scrubbed edges nearly eliminates porosity. Hence, pickling is essential for the formation of
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edges, test 6, proved to be better than ground edges and reduced porosity to a level where
it could well be overlooked in routine inspection. Among the pickling solutions those con-
taining sulfuric acid proved superior. The rinsing procedures proved to be about equal.

Porosity in pickled samples was eliminated only by vacuum baking prior to welding, tests
8 and 9.

The following conclusions were made based on this series of tests:

1. The direct cause of porosity was not identified but porosity appears to result from
the degassing during welding of a pickling residue (or adsorbed hydrogen) from the
surfaces of the joint interface.

2. Mechanical preparation is important to the extent of minimizing the joint interface

surface area.

w

he difference between alloys probably also refiects a difference in joint interface
area. The more fabricable alloys had less porosity in welds produced on sheared
blanks. Apparently the more fabricable alloys had less edge tearing from shearing
and, hence, less edge area and less porosity. With the exception of C-129Y, bend
transition temperatures increase with increasing porosity sensitivity. Hence, porosity
as measured in these tests, like bend ductility, is a measure of alloy fabricability.

4. For D-43, vacuum degassing of components following pickling and prior to welding
is required to prevent porosity. The less sensitive alloys, particularly T-111, T-222,
FS-85, Ta-10W, and SCb-291 should not require vacuum degassing while for the
intermediate alloys Cb-752, B-66, and C~129Y, degassing is probably desirable.

5. Pickling solutions containing sulfuric acid proved advantageous. This indicates

that fluoride residues, whose removal is enhanced by including sulfuric acid in the

pickling solution, are at least partially responsible for the occurrence of porosity.

The results of these experiments provide guidelines for the edge preparation of these alloys.
Naturally, specific refinements are probably required to optimize these procedures for any

particular alloy. As demonstrated with D-43, optimization of joint preparation in the most
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severe case requires vacuum degassing. This strongly implicates hydrogen as the source of
weld porosity. Atomic hydrogen tends to be absorbed during pickling and, because of its low
solubility at elevated temperatures, is released as gaseous hydrogen producing porosity.
Hydrogen evolution observed by Stoner and Lessmann(] 2)during vacuum annealing of pickled
refractory metals lends support to this conclusion. Pickling and welding did not result in a
detectable hydrogen contamination. Ten welds were chemically analyzed and found to be
essentially free of hydrogen. ‘The highest value was 1.6 ppm while eight values were less

than 1 ppm.

As a cross-check on the effect of edge preparation and welding procedures on weld ductility,
bead-on-plate welds were made using parameters previously employed for butt welding and
were bend tested. These tests indicated that edge preparation had no significant effect on

ductility.

POST WELD ANNEALING

The effect of post weld annealing on the weld ductility of the various alloys is shown for

GTA welds in Figure 38 and for EB welds in Figure 39. Approximately 120 bend transition
curves are summarized in these figures. This comparison of alloy behavior is based on longitud-
inal bend fransition temperatures. Similar results were obtained for transverse bend testing

and are therefore not shown. Broken curves are shown below the lowest annealing tempera-

tures since annealing response in this range was not determined.

The 1 hour post weld annealing temperatures were selected in the stress relief-recrystallization
range. Hence, the columbium alloys were annealed at 1900, 2200, and 2400°F, while the
tantalum alloys were annealed at 2400, 2700, and 3000°F. Welding parameters which
produced the lowest DBTT, as determined in the weld parameter study, were used in preparing
welds for this evaluation. The selected weld parameters are listed in Table 11 along with

the most beneficial post weld anneals identified in this study.
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TABLE 11- Optimized Weld Conditions for 0. 035 Inch Sheet

ovrs;: .Z' ‘X’JSZZT Vv\lefi 3DBTT, °F2

Alloy Process Parameters Temp., F Top/Bottom Long. Trans.
(1) . (inches) Bends Bends
Ta-10W GTA 7.5-1/4-118 None .190/.180 | <-320 | <«-320
EB 15-1/2-4. 5 None .049/.034 | <-320 | <-320
T-111 GTA 15-3/8-115 24oo§F .195/.189 | <-320 | «-320
EB 15-1/2-3. 8 2400°F .038/.027 | <-320 | <-320
T-222 GTA | 30-1/4-1%90 24ooz|= .180/.159 | <-320 | «-320
EB 15-1/2-3. 8 2400°F .039/.026 | <-320 | <-320
B-66 GTA 15-3/8-86 Non% . 190/. 180 0 +75
EB 25-3/16-3. 2 1900°F .036/.024 -225 -175
C-129Y GTA | 30-3/8-110 2400°F .180/. 130 -200 -225
EB 50-1/2-4. 1 2200°F .040/. 026 -250 -250
Cb-752 GTA | 30-3/8-87 2200°F . 129/. 090 -75 0
EB 15-3/16-3. 3 2400°F .036/.017 -200 -200

D-43 GTA | 30-3/8-114 2400°F .159/.143 +100 003
EB 50-1/2-4. 4 2400°F .040/.027 -225 -225
D-43Y GTA | 15-3/8-83 2400°F .165/.150 -175 -250
EB 50-1/2-4.0 2400°F .036/.022 -250 | <-300
FS-85 GTA | 15-3/8-90 2400°F . 204/.195 -175 -175
EB 50-3/16-4. 4 2200°F .038/.026 -200 -200
SCb-291 GTA | 15-1/4-83 2200°F .160/. 150 -275 -275
EB 50-1/2-4. 4 None .038/.027 | <-320 -250

(1) For GTA Welds:
For EB Welds:

Speed (ipm) - Clamp Spacing (in.) - Amperes
Speed (ipm) - Clamp Spacing (in.) - Milliamperes

(All EB welds with 60~, 0. 050 inch longitudinal deflection and
150 KV beam voltage)

(2) BDBTT=Bend Ductile Brittle Transition Temperature at 1t Bend Radius Except

FS-85 EB Welds at 2t Bend Radius.

(3) Probable Value (Determined Value <—125°F)
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Measurable responses to post weld annealing were noted for all the columbium alloys. GTA
welds in D-43, Cb-752, C-129Y and SCb-291 appear to experience an age-overage response
with increasing annealing temperature. All these tend to lose ductility at the lower anneal-
ing temperatures and recover at the higher temperature. D-43 demonstrated the most severe
aging response. Interestingly, the ytirium modified material, D-43Y, merely improved in
" ductility with increased annealing temperature to the extent of nearly recovering base metal
ductility after 1 hour at 2400°F. FS-85 GTA welds had a double aging response improving
in ductility at ]900°F, aging at 2200°F and overaging at 2400°F. A similar response for
FS-85 welds was previously observed.(la) B-66 GTA welds showed a 50°F increase in the
DBTT which probably resulted primarily from grain growth. GTA welded tantalum alloys,
except T-222 annealed at 2700°F, did not respond to aging with any apparent change in
ductility.

Electron beam welds in columbium alloys did not generally display the age-overage response
characteristic of the GTA welds. In this group, Figure 39, only Cb-752 had a marked age-
overage response while D-43Y had a slight aging response. The other columbium alloys have
improved annealed weld ductility while the tantalum alloys and SCb-291 EB welds were

ductile below -320°F for all conditions.

TENSILE EVALUATION

Tensile testing was used as a weldability screening tool to compare the tantalum and columbium
alloys. In order of decreasing importance, this evaluation was based on joint efficiency,
fracture mode, and strength. Joint efficiency is most tenable , providing a simple comparison
of base and weld metal. Fracture behavior provides a qualitative comparison and an intuitive
measure of performance in long life applications. Tensile strength was considered least
important since it does not correlate with creep strength accurately enough to be used in alloy
selection or system design. However, it does provide a means of categorizing alloys. All
tensile specimens were prepared using optimum welding and post weld annealing schedules,

Tables 7 and 11.
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Joint Efficiences. Excellent joint efficiencies were obtained through 2400°F as is apparent

in Figures 40- and 41. Hence, all alloys satisfied the basic screening objective of this study.
The joint efficiencies obtained are true metallurgical comparisons since weld contour effects

were eliminated by grinding weld specimen surfaces.

Tensile Strength. Tensile strength provides an indication of the effectiveness of the strength-
ening mechanisms employed in these systems. Interestingly, there is not much variability in
room temperature strength, Figure40 and Table 12. This reflects a fabricability limitation

since increased room temperature strength is usually achieved with a decrease in fabricability.

These materials were designed for high temperature strength which is summarized in Figures
41,42, and 43. A tantalum alloy superiority in both strength and stability (rate of change of
strength with increasing temperature) is apparent. Within alloy groups, alloys containing a
reactive element (Zr or Hf) are stronger. Carbide strengthening proved particularly beneficial
for D-43. Most of the columbium alloys lose uniqueness at 2400°F as demonstrated by a con-

vergence of tensile strengths.

Tensile properties compared well with generally reported data. D-43 was about 6000 psi
stronger than expected indicating a fairly optimum metallurgical condition was achieved
in this strain-induced precipitation-hardened alloy. T-222 was weaker than expected pro=
bably because of a post weld anneal induced reaction similar to a 16 hour at 2000°F effect
observed by Ammon, Filippi, and Horrod(.]) Cb-752 strength is perhaps 4000 psi less at
2000°F than obtainable through optimum duplex anneal processing(] 0 Data for Ta-10W
and SCb-291 were available only for stress-relieved material which is stronger than re-

crystallized material.

The tendency for weld yield strengths to equal or exceed base yield strengths, Figure 42,
reflects the fact that straining in transverse weld tests generally does not occur uniformly
throughout the gage section. Hence, one cannot infer that true weld yield strengths greater

than base metal strengths were realized. Similarly, a comparison of tensile elongation
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sehavior, ‘Figure 43, is not meaningful except when interpreted in terms of fracture mode as

is done below.

lensile Deformation and Fracture. Transverse sheet weld specimens generally failed in the
welds except for D-43Y, which failed only in base metal, and the alloys B-66, Cb-752, and
5Cb-291 which had base failures at 2100°F and 2400°F.

At room temperature failures occurred by ductile shear although welds in the stronger columbium
alloys, particularly in B-66, and to some extent D-43 and FS-85, had partial cleavage fractures.
As late welds failed by brittle cleava
The ductile shear fracture behavior persists for all alloys to 1800°F. Between 1800°F and
2400°F a transition in fracture mode occurs. Significant differences in alloy fracture behav-
ior occur in this transition region. These differences can be interpreted in terms of the effect
of grain size (as a measure of unit volume grain boundary area), structural stability (recrystal-
lization), and relative matrix-grain boundary strengths. For high temperature application,

the role of grain boundaries in deformation and fracture is particularly important as has been

indicated by Begley and Godshall.(] R

Alloys were categorized in three groups based on the observed elevated temperature transi-
tion behavior. This approach provided a further insight into the effectiveness of the strength-
ening processes operative in these alloys. These groups are discussed below in an intuitive

order of decreasing effectiveness for long life application.

The first category is comprised of the tantalum based alloys and the stronger columbium alloys,
FS-85 and D-43. These alloys had well balanced matrix and grain boundary strength throughout
the test temperature range. Base metal specimens failed primarily by ductile shear. Weld speci-
mens failed in the welds by ductile shear through 1800°F but by grain boundary separation at
2400°F. Weld grain size and orientation were most important in 2400°F fracture behavior,
Figure 44. The solid solution alloy Ta=-10W, having the largest weld grain size, is seen to

have failed at low total strain in wide grain boundaries spanning nearly the entire specimen

21
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thickness. The large grain size of Ta-10W welds probably results from a narrow freezing range

~

and single phase structure since this is typical of that observed in unalloyed refractory metals.
The other alloys failed largely in grain boundaries oriented in the direction of maximum re-
solved shear stress as shown clearly for D-43. Because of the orientation preference, fracture
location was often near the weld edge where grain boundary orientations were favorable. The
localized yielding in weld failures accounts for the low weld elongations. The disparity
between base and weld elongation which tends to increase with temperature results from the

weld transition to grain boundary failures.

The second category is comprised of the yttrium modified alloys C-129Y and D-43Y. These
were characterized by a poorer balance of grain boundary versus matrix strength and a stable,
more refined grain size. Grain boundaries are relatively weak in yttrium containing alloys.
The failure mode shifted rapidly with increasing test temperature from ductile shear to grain
boundary sliding. Extensive bulk grain boundary separation occurred at higher temperatures
in the fine grained base metal. This resulted in a very large and rapidly increasing total
elongation. Considerably less elongation was noted for welds presumably because of local-

ized yielding and increased grain sizes in the C-129Y specimens which failed in the weld,
and presumably because of the localized base metal failures occurring in D-43Y. Typical

failure modes for these are evident in the structures shown in Figure 45,

The third category is comprised of those alloys which have less stable grain structures and
tend to recrystallize during elevated temperature testing. Because of the resultant grain
boundary mobility these do not display a pronounced shift to grain boundary fracture at
2400°F. They fail primarily in the base metal with very little flow resistance in either matrix
or grain boundaries as evidenced by high elongation. The columbium alloys B-66, Cb-752,
and SCb-291 fall in this category. Fracture structures are shown in Figure 46. The B-66

failure is somewhat mixed-mode displaying grain boundary separation.
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C-129Y Base Metal General Area at 100X C-129Y Base Metal Fracture at 100X

C-129Y Weld Fracture at 80X D-43Y Base Metal Fracture at 100X

FIGURE 45 - Fracture Characteristics of Yttrium Modified Alloys Tensile Tested at 2400°F.
Fracture by Grain Boundary Separation. (D-43Y Weld Specimens Failed in
the Base Metal Without any Indication of Incipient Weld Failures.)
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B-66 200X

Cb-752 200X

FIGURE 46 - Base Metal Fr%c’rures for B-66 (top) and Cb-752 (bottom) Tensile
Tested at 2400 F
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FIGURE A3 - Bend Test Results for T-111 GTA Welds
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BEND ANGLE, DEGREES
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FIGURE A5 -~ Bend Test Results for T-111 EB Welds



BEND ANGLE, DEGREES
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FIGURE A6 - Bend Test Results for T-111 EB Welds
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WELD BEND DUCTILE - BRITTLE TRANSITION TEMPERATURE, °F
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FIGURE A7 - Effect of Post~-Weld Annealing on T-111
Sheet Weld Ductility
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DPH Hardness, 10 Kg Load
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FIGURE A8 - Hardness Traverses, T-111 GTA Sheet Butt Welds
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FIGURE A9 - T-111 As-Welded Microstructures for Sheet GTA Butt Weld No. 3
(Met. 8679)
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FIGURE A11 - Post Weld Annealed T-111 GTA Sheet Butt Weld Microstructure,
All 400X at Weld Interface
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DPH Hardness, 10 Kg Load
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DPH Hardness, 10Kg Load
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BEND ANGLE, DEGREES
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FIGURE A16 - Bend Test Results for T-222 GTA Welds
1t Bend Radius
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FIGURE A18 - Bend Test Results for T-222 EB Welds
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BEND ANGLE, DEGREES
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FIGURE A19 - Bend Test Results for T-222 EB Welds
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DPH Hardness, 10 Kg Load
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Weld o
260
.\
——-.
250 @ / .’ N
240 ] | | | | | 1 ! |
1 2 3 4 5 6 7 8 9

280 _T3-PWA30-TIG, Met. 9533 Post Weld Annealed 1 Hour at 3000°F

/"

/°/.\ *

270L

260/— o—o—¢ °

2501 Weld

240 1 ] ] I 1 ! ] 1 1 1
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FIGURE A21 - Hardness Traverses, T-222 GTA Sheet Butt Welds
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Weld Edge Weld Center
GTA Weld No. 7 Met. 8682 100X

80X Weld Edge 400X
EB Weld No. 5 Met. 9177-4

FIGURE A22 - T-222 As-Welded Sheet Butt Weld Microstructure
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Base Weld Edge
Annealed One Hour at 2400°F. Met. 9531, 500X

Weld Edge
Annealed One Hour at 2700°F. Met. 9532, 500X

~ s g . - s

Base Weld Edge
Annealed One Hour at 3000°F. Met. 9533, 500X

FIGURE A23 - Post Weld Annealed T-222 GTA Weld Microstructure
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FIGURE A25 - Post Weld Annealed T-222 EB Weld Microstructure
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Hardness, DPH 10 Kg Load
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FIGURE A26 - T-222 Plate Weld Hardness Traverses
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FIGURE A27 - T-222 Plate Weld Annealed One Hour at 2400°F
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BEND ANGLE, DEGREES
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FIGURE A29 - Bend Test Results for Ta-10W GTA Welds
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BEND ANGLE, DEGREES
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FIGURE A30 - Bend Test Results for Ta-10W GTA Welds
1t Bend Radius

140



220] 0T X §°T Jo seanssedd sepTaold a073081d UOTFENO®BA® JUBIIN) °Z

#T 9andTg 995
9SJ9ASUBIY ST J

TeurpnyTduoT 6T T T

QIOH X6l 290°0 0L0°0 0962 oYL %60°0 6°Y 40%0°0-1 qT AN
g-0T X § | 2€0°0 | 0%0°0 00£€ | $28 /N $°S u0$0°0~1 | ST T
QIOH X8| §20°0 gh0°0 0861 628 g°s u0%0°0~1 4 0T
mIOH X T| 020°0 o%0°0 066 628 6°S 1090°0~1 09 6
¢-0T X T 0€0°0 0£0°0 089 0ETT Z 8 :OmO.OIA 00T 8
mlOH X T|] 0T0°0 020°0 o%s 006 %60°0 9°9 00T L
¢-0T X 2| 090°0 0L0°0 00're 009 0s2°0 Y 1090°0-1 et 9
QIOH X %7} 050°0 $90°0 00Le §L9 \>7/ Y u090°0~1 St g
olOH X 47| $S0°0 090°0 008T 054 0°9 u050°0~1 e2 ki
olOH X6°T| OY0°0 ¢50°0 006 054 0°¢ u090°0-1 0s £
OIOH X6 020°0 6200 089 OtTT [4:} u050°0-1 001 4
olOH X 6| 910°0 0€0°0 ovs 006 0s2°0 9°9 00T T
(xx0l,) wo3304g doj, yout Jaod | (s338M) | (S8YIUT) (&) (s8yout) (wdt) “oN

»IMNOB (5900UT) *095-138M | J8MOJ wm.w“wm juegJn) | TUOT308TFeQ | Paads | PTeM

YIPTM Desd PTSM )

P03y P[ap HNg g3 "193YS MOL-PL - 9V F18VL

141




BEND ANGLE, DEGREES
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FIGURE A31 - Bend Test Results for Ta=10W EB Welds
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BEND ANGLE, DEGREES
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FIGURE A32 - Bend Test Results for Ta-10W EB Welds
1t Bend Radius

143



WELD BEND DUCTILE - BRITTLE TRANSITION TEMPERATURE, °F
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FIGURE A33 - Effect of Post Weld Annealing on Ta-10W Weld Ductility
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Hardness, DPH, (10 Kg)
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FIGURE A34 - Hardness Traverses in Ta-10W GTA Welds
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9176-1 EB Weld No. 6 80X

FIGURE A35 - Ta-10W Sheet Weld Microstructure at Weld Edge
(Clean Structured Weld Typical of Both GTA & EB Welds)
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9525 Annealed One Hour at 2400°F 80X

9527 Annealed One Hour at 3000°F 80X

FIGURE A36 - Post Weld Annealed Ta-10W Weld Microstructure at Weld Edge,
GTA Weld No. 6 Parameters

147



Dye Penetrant Inspected 43650

0.035 Sheet

£

ST

)
o

,v!L

i v e s <

Welded Circular Groove 43650 Butt Weld Specimen 126-3
0.375 Plate

FIGURE A37 - Ta-10W Weldability Qualification Tests
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DPH Hardness, 10Kg Load
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FIGURE A38 - Ta-10W Plate Weld Hardness Traverses
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FIGURE A39 - As-Received Microstructure of FS-85 100X
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FIGURE A40 - FS-85 Sheet Base Metal Bend Test Results
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BEND ANGLE, DEGREES
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FIGURE A41 - Bend Test Results for FS-85 GTA Welds
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FIGURE A42 - Bend Test Results for FS-85 GTA Welds
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BEND ANGLE, DEGREES
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FIGURE A43 - Bend Test Results for FS-85 EB Welds
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BEND ANGLE, DEGREES
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FIGURE A44 - Bend Test Results for FS-85 EB Welds
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WELD BEND DUCTILE - BRITTLE TRANSITION TEMPERATURE, °F

0 I/\FI T T

LONG. BEND
TIG WELDS
-100 | ° ]
-200 |~ ® —
TRANS, BEND
| | L |
R.T.*J\/ 1900 2200 2400 2600
*AS WELDED
-100 —\— | |
®
\0\
=200 ° —]
EB WELDS
=300 — —
| ] | L
R.T.* Y% 1900 2200 2400 2600

ONE HOUR POST WELD ANNEALING TEMPERATURE, °F

FIGURE A45 - Effect of Post-Weld Annealing on F5-85 Weld Ductil ity
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DPH Hardness, 10 Kg Load

Weld No. 2, Met, 8671 As-Received Base, DPH = 190

220 e
°
21 -~
0 r / \.
\.
200 _ =~
\.
190]__
HAZ Base
180 ! ] 1 ] | | 1
5 6 7 8 9 10 1 12
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220 _
. .——. _ "
210 s — o OO
°
200 | o S~— °
° Weld L4
-
190 1 1 ] I 1 | | | | | !
| 2 3 4 5 6 7 8 9 10 11 12
200 Weld No. 7 Annealed 1 Hour at 2400°F, Met. 10,120
el l
\. o\ ®
180 |— ) o~
Weld
170 |—
160 | 11 | { | { | IR A | |
1 2 3 4 5 6 7 8 9 10 1 12

FIGURE A46 - Hardness Traverses of FS-85 Sheet GTA Butt Welds
(183 & 183 DPH for Annealed EB Weld)
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200X 10,120 200X

FIGURE A47 - FS-85 GTA Sh%et Weld Microstructure. As-Welded, Left. Annealed
1 Hour at 2400 F, Right. Clean, Largely Single Phase Throughout.
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10,118 Weld 400X 10,119 Weld 400X
/. \/' P . - P .

A s : T . ’

rlr
L o o
T - o
. f/
10,118 HAZ 400X 10,119 HAZ 200X

FIGURE A48 - FS-85 GTA Sheet Weld Microsfrucfure.oAnnealed 1 Hour at
1900°F, Left. Annealed 1 Hour at 2200°F, Right.
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10,181 6X
FS-85

FIGURE A49 - FS-85 Plate Weld Macrosection
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® INéHES

Fs-85 427-6
125° Longitudinal Bend
145° Transverse Bend

FIGURE A50 - FS-85 Plate Weld Bend Specimens
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10,173

10,181

- As-Welded

500X

500X

Welded and Annealed for 1 Hr, af 2400°F (Second Phase in

Final Weld Pass Only)

FIGURE A51 - FS-85 Welded Plate Microstructure
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DPH Hardness, 10Kg Load
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Transverse Traverse

A | I | l | 1
.050 .100 150 .200 .250 .300 .350  .400
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FIGURE A52 - FS-85 Plate Wela Hardness Traverse
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DPH Hardness, 10 Kg Load

210
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T
10,181 FS-85 Annealed | 6X
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| ] | | 1 | ] | |

—e

.080 .160 .240 .320 .460 .480 .560 .440 .720 .800

240

220

200

180

[ ]
\ 0\,./.\.———./.
I | I I | | I
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FIGURE A53 ~ F5-85 Plate Weld Hardness Traverse
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.035 Sheet

.035 Sheet

Longitudinal Transverse

FIGURE A54 - As-Received Microstructure of AS-55 Sheet
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BEND ANGLE, DEGREES
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TEST TEMPERATURE, °F
FIGURE A55 - Bend Test Results for AS-55 GTA Welds

1t Bend Radius
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BEND ANGLE, DEGREES
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FIGURE A56 - Bend Test Results for AS-55 GTA Welds

1t Bend Radius
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FIGURE A57 - Bend Test Results for AS-55 EB Welds

1t Bend Radius
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BEND ANGLE, DEGREES
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FIGURE A58 - Bend Test Results for AS-55 EB Welds
1t Bend Radius
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T T ———

FIGURE A59 - AS-55 Sheet Butt Weld, Top View Showing
Slagging of Yttrium Oxides
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FIGURE A62 - As-Received Microstructure of B-66 100X
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| | l |
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FIGURE Aé3 - B-66 Base Metal Bend Test Results
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BEND ANGLE, DEGREES
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FIGURE A64 - Bend Test Results for B-66 GTA Welds
1t Bend Radius
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BEND ANGLE, DEGREES
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FIGURE Aé5 - Bend Test Results for B-66 GTA Welds
1+ Bend Radius
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FIGURE A82 - C~129Y Sheet Butt Weld Microstructure
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FIGURE A85 - C-129Y Plate Weld Bend Specimens
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FIGURE A90 - Bend Test Results for Cb-752 EB Welds
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DPH Hardness, 10 Kg Load

Weld No. 7, Met. 8673 As-Received DPH = 205
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FIGURE A93 - Hardness Traverses, Cb-752 GTA Sheet Butt Welds
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9167-1 80X

FIGURE A94 - Cb-752 EB Weld No. 11
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8672 As-Welded
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10,126 Annealed 1 Hr. at 2400°F

FIGURE A95 - Cb-752 GTA Sheet Weld Microstructure
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10,124  HAZ, Annealed 1 Hour at 1900°F

10,125  HAZ, Annealed 1 Hour at 2200°F

FIGURE A96 - Cb-752 GTA Sheet Weld Microstructure, 400X
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FIGURE A97 - Plate Weld Microstructure of Cb-752
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DPH Hardness, 10 Kg Load

Cb-752 As-Welded
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FIGURE A98 - Plate Weld Hardness Traverses of Cb-752
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DPH Hardness, 10 Kg Load

Cb-752 Annealed 1 Hr. at 2200°F

200 ——
\ Longitudinal Traverse L-L
180 o \ T / \
160 | | L1 I
.080 .160 .240 .320 .400 .480 .560 .640 .720 .800
200

/.\
¢ ‘\o ./°"\o
180 -

Transverse Traverse T-T o

160 I I I | | |
.050 .100 .150  .200 .250 .300 .350 .400

Distance in Inches

FIGURE A99 - Plate Weld Hardness Traverses of Cb-752

220



Cb-752 4L27-2
29° Longitudinal Bend
45° Transverse Bend

FIGURE A100 - Plate Weld Bend Specimens of Cb-752
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0.082" Wire

0.035" Sheet

200X 2621 0.375" Plate 50X 2625

Longitudinal Transverse

FIGURE A101 - As-Received Microstructure of D-43, 100X
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BEND ANGLE, DEGREES

100

LONG. DBTT -150

A
| TRANS. DBTT
+ |
| |
b
to D-43
D
| | | __*7_ 1 |
-300 -200 -100 0 100

TEST TEMPERATURE, °F

FIGURE A102 - D-43 Base Metal Bend Test Results
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FIGURE A103 - Bend Test Results of D-43 GTA Welds
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BEND ANGLE, DEGREES
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FIGURE A104 - Bend Test Results of D-43 GTA Welds
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BEND ANGLE, DEGREES
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FIGURE A105 - Bend Test Results of D-43 EB Welds
1t Bend Radius
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BEND ANGLE, DEGREES
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FIGURE A106 - Bend Test Results of D-43 EB Welds
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DPH Hardness, 10 Kg Load
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FIGURE A108 - Hardness Traverses, D-43 GTA Sheet Butt Welds
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8668 As-Welded 10,112 Annealed 1 Hr. at 1900°F
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10,113 Annealed 1 Hr. at 2200°F 10,114 Annealed 1 Hr. at 2400°F

FIGURE A109 - Weld Microstructure in D-43 GTA Sheet Butt Welds, 400X
All Weld Structure.
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10,179 500X
Welded and Annealed for 1 Hr. at 2400°F

FIGURE A110 - D-43 Welded Plate, Weld Microstructure
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FIGURE A111 - D-43 Welded Plate Hardness Traverses
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DPH Hardness, 10 Kg Load

D-43 Annealed 1 Hour at 2400°F
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FIGURE A112 - D-43 Welded Plate Hardness Traverses
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FIGURE A113 - D-43 Plate Weld Bend Specimens
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D-43Y

FIGURE A114 - As-Received Microstructure of D-43Y Sheet
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BEND ANGLE, DEGREES
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FIGURE A116 - Bend Test Results of D-43Y GTA Welds
it Bend Radius
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BEND ANGLE, DEGREES

120 T 1 T T 120 T T  E— T
100 |- + -0— - 100 | -
/I
ol | | . 8 |- -
{ +
| LONG . DBTT
oo LI + 125°F - 60 |- -
|
TRANS. DBTT 3 N
40 - 7 P et r 40
20 - wewb NO. 7 . 20 - wELD NO. 8 NOT TESTED -]
0 1 1 i 1 | 0 i 1 i 1 1
-300 -200 -100 O 100 200 300 -300 -200 -100 O 100 200 300
120 T T T T T 120 T T T T T
- 100 |- ++T —
4 ofl |V 1 -
{ | LONG,, DBTT
| 0 L i 75°F i
|
| _
. 40 TRANS , DBTT
-175°F
— 20 +— —
WELD NO. 9 WELD NO. 10
0 ] I I I I 0 ! ] i I i
-300 -200 -100 O 100 200 300 -300 -200 -100 O 100 200 300
120 T T T T T 120 T T T T T
100 | + . 100 .
80 | o - 80 - -
| |
o LonG.! :
- - o -
0 AR A1 ¢0 LONG. |
i+ DBTT
40 - 40 +200° F —
20 - WwELDNO. N - 20 - welo NO. 12 .
o 1 ] i I I 0 ! I I i I
-300 =200 -100 0O 100 200 300 -300 -200 -100 O 100 200 300

TEST TEMPERATURE, °F

FIGURE A117 - Bend Test Results of D-43Y GTA Welds

1t Bend Radius
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BEND ANGLE, DEGREES
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FIGURE A118 - Bend Test Results of D-43Y EB Welds

1t Bend Radius
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FIGURE A119 - Bend Test Results of D-43Y EB Welds
1t Bend Radius
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FIGURE A120 - Effect of Post Weld Annealing on D-43Y Weld Ductility

245



SPI9M HNQ 4994S Y1 AEp-Q ‘sesiaApl] ssaupiol - ZZ1y NI

Al L ol 8 L 9 o 4 £ z L
| 1 [ [ [ I | [ [ | ovl
~— 01Z6 #3W ‘2L 'ON PI1®M O 061
7 }
6026 48W ‘G 'ON PIPM @ 091
A
® 08l
PI9aM
061
o °
o \Ko =002
000 = [=—=] \o s
° 012

PIPM

poo] By Q1 ‘ssaupioy HAQ@

246



. FIGURE A122 - D-43Y GTA Sheet Butt Weld Microstructure Weld
Number 9. 500X. Met. 9740
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FIGURE A123 - D-43Y GTA Sheet Butt Weld Microstructure Annealed
1 Hour at 2400°F, 400X. Met. 10,144
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0.082" Wire

0.035" Sheet 2803

3326 0.375" Plate 3327

Longi;c,udinal Transverse

FIGURE A124 - As-Received Microstructure of SCb-291, 100X
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BEND ANGLE, DEGREES
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FIGURE A125 - SCbh-291 Base Metal Bend Test Results
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BEND ANGLE, DEGREES
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FIGURE A126 - Bend Test Results for SCb-291 GTA Welds

1t Bend Radius
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BEND ANGLE, DEGREES
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FIGURE A127 - Bend Test Results for SCb-291 GTA Welds
1t Bend Radius
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FIGURE A128 - Bend Test Results for SCb-291 EB Welds

1+ Bend Radius
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FIGURE A129 - Bend Test Results for SCb-291 EB Welds
1t Bend Radius
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FIGURE A130 - Effect of Post Weld Annealing on SCb-291 Weld Ductility
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DPH Hardness, 10 Kg Load

Weld No. 10, Met. 8675 As-Received DPH = 175

180
®
170 ./ \
.—\
ool * ¢
- { ]
* Weld HAZ Base
150 1 ] ] | | | | |
1 2 3 4 5 6 7 8 9 10
170 Weld No. 3, Met. 8674
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160} ° * .
[ ]
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150 | ] 1 1 1 L | |
] 2 3 4 5 I 7 8 9 10
Weld No. 3 Annealed | Hour at 2200 F, Met., 10,131
170 =~
P Y |
[ ]
160]— ~°
A.
\IP/. \\
150
[—— Weld ——
140 | | | 1 1 ) 1 | | |
1 2 3 4 5 6 7 8 9 10 11

FIGURE A131 - Hardness Traverses, SCb-291 GTA Sheet Butt Welds
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\: 3
Weld Edge 400X

Weld 80X

FIGURE A132 - SCb-291 EB Sheet Butt Weld Microstructure. Weld
Number 3. Met. 2169.
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DPH Hardness, 10Kg Load

180
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™
160 | /‘ *we \./-"'\o_—o
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i? o Weld
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p—— ~
160 L o @ ®
Transverse Traverse
140 1 | 1 ] ] 1 |
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Distance in Inches

FIGURE A133 - SCbh-291 Welded Plate Hardness Traverses
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DPH Hardness, 10 Kg Load

T
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FIGURE A134 - SCb-291 Welded Plate Hardness Traverses
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SCb-291 435
160° Longitudinal Bend
132° Transverse Bend

FIGURE A135 - SCb-291 Welded Plate Bend Specimens
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FIGURE A136 - Bend Test Results for Base Metal and GTA Welds in

Unalloyed Arc Cast Tungsten
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FIGURE A138 - Hardness Traverses for GTA Welds in Unalloyed Arc Cast Tungsten
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FIGURE A149 - W-25Re EB Weld and Base Metal Microstructure
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Weld No.

Weld No. 3 No Preheat; 3 ipm; 44.2 Kilojoules/inch 6023

Weld No. 4 Preheoted 550°F; 3 ipm; 42.5 Kilojoules/inch 6023

FIGURE A150 - Sylvania "A" GTA Welds
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FIGURE A151 - Sylvania "A" GTA Bead-on-Plate Patch Test
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